Multi-hypercyclic operators are hypercyclic

被引:51
|
作者
Peris, A [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46071 Valencia, Spain
关键词
D O I
10.1007/PL00004850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Herrero conjectured in 1991 that every multi-hypercyclic (respectively, multi-supercylic) operator on a Hilbert space is in fact hypercyclic (respectively, supercyclic). In this article we settle this conjecture in the affirmative even for continuous linear operators defined on arbitrary locally convex spaces. More precisely, we show that, if T : E --> E is a continuous linear operator on a locally convex space E such that there is a finite collection of orbits of T satisfying that each element in E can be arbitrarily approximated by a vector of one of these orbits, then there is a single orbit dense in E. We also prove the corresponding result for a weaker notion of approximation, called supercyclicity(1).
引用
收藏
页码:779 / 786
页数:8
相关论文
共 50 条
  • [41] Epsilon-hypercyclic operators
    Badea, Catalin
    Grivaux, Sophie
    Mueller, Vladimir
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1597 - 1606
  • [42] Commutation relations and hypercyclic operators
    Kim, Vitaly E.
    ARCHIV DER MATHEMATIK, 2012, 99 (03) : 247 - 253
  • [43] Hypercyclic Generalized Shift Operators
    Ivkovic, Stefan
    Tabatabaie, Seyyed Mohammad
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (05)
  • [44] Hypercyclic and chaotic convolution operators
    Bonet, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 253 - 262
  • [45] Faber-hypercyclic operators
    Catalin Badea
    Sophie Grivaux
    Israel Journal of Mathematics, 2008, 165 : 43 - 65
  • [46] Faber-hypercyclic operators
    Badea, Catalin
    Grivaux, Sophie
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 165 (01) : 43 - 65
  • [47] Recurrence properties of hypercyclic operators
    J. Bès
    Q. Menet
    A. Peris
    Y. Puig
    Mathematische Annalen, 2016, 366 : 545 - 572
  • [48] Hypercyclic Operators on Banach Spaces
    Panayappan, S.
    Meena, S.
    Vivin, J. Vernold
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (04) : 35 - 43
  • [49] LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATORS
    HERRERO, DA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) : 179 - 190
  • [50] Hypercyclic Generalized Shift Operators
    Stefan Ivković
    Seyyed Mohammad Tabatabaie
    Complex Analysis and Operator Theory, 2023, 17