Experimental and numerical damage characterization of glass/polypropylene multidirectional laminates under quasi-static loading condition

被引:4
|
作者
Sommer, J. [1 ]
Hajikazemi, M. [1 ,2 ]
De Baere, I. [1 ]
Van Paepegem, W. [1 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Mat Text & Chem Engn, Technol Pk Zwijnaarde 46, Ghent, Belgium
[2] Dutch Polymer Inst DPI, POB 902, NL-5600 AX Eindhoven, Netherlands
关键词
Thermoplastic composites; Damage characterization; In -situ instrumentation; Physics -based modeling; POLYPROPYLENE COMPOSITES; PART I; FATIGUE BEHAVIOR; COOLING RATE; GLASS; TEMPERATURE; FAILURE; CRACK; MECHANISMS; FRACTURE;
D O I
10.1016/j.compscitech.2022.109569
中图分类号
TB33 [复合材料];
学科分类号
摘要
Polypropylene (PP) as a commodity thermoplastic, when reinforced with continuous glass fibers provides cost-effective composites. However, the low glass transition temperature and fabrication induced semi-crystalline morphology of PP set challenges for the experimental characterization especially when the quantification of damage mechanisms in multidirectional laminates is concerned. This paper is aimed at performing in-situ experimental observation, quantification and theoretical modeling of damage mechanisms in glass fiber rein-forced polypropylene multidirectional laminates subjected to uniaxial quasi-static loading conditions. Two Stereo Digital Image Correlation systems (3D-DIC) are applied to measure the full-field strains and quantify the extent of damage mechanisms from the specimen's edge. The effects of ply thickness, off-axis ply orientation and location on damage initiation and growth are studied by testing different lay-ups. To validate the experimental measurements, a recent physics-based modeling technique is implemented that can predict the evolution of damage modes as well as their effects on the laminate properties. Good agreements are observed between the experimental measurements and simulation results which verify the accuracy of both analyses.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] ALUMINIUM HONEYCOMB UNDER QUASI-STATIC COMPRESSIVE LOADING: AN EXPERIMENTAL INVESTIGATION
    Said, Mohamad Radzai
    Tan, Chee-Fai
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2008, 15 (01): : 1 - 8
  • [42] Experimental characterization and numerical investigation on different conformal lattice structures for specific energy absorption under quasi-static and dynamic loading
    Calpana, R.
    Ashok, Dara
    Prasanna, A.
    Kasireddy, S. R.
    Raju, M. V. A.
    Bahubalendruni
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2025,
  • [43] Compressive failure and fragmentation of fused silica glass under quasi-static loading
    Zhang, J.
    Zheng, Y.
    Li, Y.
    Zhou, F.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 641
  • [44] Testing and modelling of annealed float glass under quasi-static and dynamic loading
    Osnes, Karoline
    Borvik, Tore
    Hopperstad, Odd Sture
    ENGINEERING FRACTURE MECHANICS, 2018, 201 : 107 - 129
  • [45] Numerical and experimental study of energy absorption of PLA calibrated honeycomb structures under quasi-static loading
    Hashemi, Sayedshahabodin
    Galehdari, Seyed Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (01)
  • [46] Experimental and numerical study on failure characteristics and mechanism of coal under different quasi-static loading rates
    Liu, Xuewei
    Chen, Haixiao
    Liu, Bin
    Deng, Wei
    Liu, Quansheng
    Zhang, Zhizhen
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 121
  • [47] Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under quasi-static loading
    Schob, D.
    Roszak, R.
    Sagradov, I
    Sparr, H.
    Ziegenhorn, M.
    Kupsch, A.
    Leonard, F.
    Mueller, B. R.
    Bruno, G.
    ARCHIVES OF MECHANICS, 2019, 71 (4-5): : 507 - 526
  • [48] Experimental and numerical assessment of oblique loading quasi-static testing of railway anticlimbers
    Moreno, C.
    Reid, S.
    Williams, T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2021, 235 (02) : 143 - 154
  • [49] In Situ Characterization of Damage Development in Cottonid Due to Quasi-Static Tensile Loading
    Scholz, Ronja
    Delp, Alexander
    Walther, Frank
    MATERIALS, 2020, 13 (09)
  • [50] Investigation into different numerical methods in predicting the response of aluminosilicate glass under quasi-static and impact loading conditions
    Wang, Zhen
    Ma, Dayou
    Suo, Tao
    Li, Yulong
    Manes, Andrea
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 196