PhysicsGP: A genetic programming approach to event selection

被引:8
|
作者
Cranmer, K [1 ]
Bowman, RS
机构
[1] CERN, CH-1211 Geneva, Switzerland
[2] Open Software Serv LLC, Little Rock, AR USA
基金
美国国家科学基金会;
关键词
genetic programming; triggering; classification; VC dimension; genetic algorithms; neural networks; support vector machines;
D O I
10.1016/j.cpc.2004.12.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to some user-defined performance measure. We calculate the Vapnik-Chervonenkis dimension of this class of learning machines and consider a practical example: the search for the Standard Model Higgs Boson at the LHC. The resulting classifier is very fast to evaluate, human-readable, and easily portable. The software may be downloaded at: http://cern.ch/similar to cranmer/PhysicsGP.html. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 50 条
  • [21] A Vectorial Approach to Genetic Programming
    Azzali, Irene
    Vanneschi, Leonardo
    Silva, Sara
    Bakurov, Illya
    Giacobini, Mario
    GENETIC PROGRAMMING, EUROGP 2019, 2019, 11451 : 213 - 227
  • [22] Classification-driven model selection approach of genetic programming in modelling of turning process
    A. Garg
    L. Rachmawati
    K. Tai
    The International Journal of Advanced Manufacturing Technology, 2013, 69 : 1137 - 1151
  • [23] Evolving Rules for Action Selection in Automated Testing via Genetic Programming - A First Approach
    Esparcia-Alcazar, Anna I.
    Almenar, Francisco
    Rueda, Urko
    Vos, Tanja E. J.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II, 2017, 10200 : 82 - 95
  • [24] Classification-driven model selection approach of genetic programming in modelling of turning process
    Tai, K. (mktai@ntu.edu.sg), 1600, Springer London (69): : 5 - 8
  • [25] Breast Cancer Diagnosis using Simultaneous Feature Selection and Classification: A Genetic Programming Approach
    Bhardwaj, Harshit
    Sakalle, Aditi
    Tiwari, Aruna
    Verma, Madhushi
    Bhardwaj, Arpit
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2186 - 2192
  • [26] Classification-driven model selection approach of genetic programming in modelling of turning process
    Garg, A.
    Rachmawati, L.
    Tai, K.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 69 (5-8): : 1137 - 1151
  • [27] Feature construction and selection using Genetic Programming and a Genetic Algorithm
    Smith, MG
    Bull, L
    GENETIC PROGRAMMING, PROCEEDINGS, 2003, 2610 : 229 - 237
  • [28] SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming
    Rodrigues, Nuno M.
    Batista, Joao E.
    La Cava, William
    Vanneschi, Leonardo
    Silva, Sara
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 68 - 84
  • [29] A constraint programming approach to portfolio selection
    Wetzel, G
    Zabatta, F
    ECAI 1998: 13TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 263 - 264
  • [30] Learning of complex event processing rules with genetic programming
    Bruns, Ralf
    Dunkel, Juergen
    Offel, Norman
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 129 : 186 - 199