Effect of Layer Stacking on the Electronic Structure of Graphene Nanoribbons

被引:28
|
作者
Kharche, Neerav [1 ,2 ]
Zhou, Yu [2 ]
O'Brien, Kevin P. [3 ]
Kar, Swastik [4 ]
Nayak, Saroj K. [2 ]
机构
[1] Rensselaer Polytech Inst, Computat Ctr Nanotechnol Innovat, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] Intel Corp Components Res, Hillsboro, OR 97124 USA
[4] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
graphene nanoribbons; electronic structure; GNR magnetism; graphene interconnects; quasiparticle band gaps; TOTAL-ENERGY CALCULATIONS; PSEUDOPOTENTIALS; SEMICONDUCTORS; GAS;
D O I
10.1021/nn200941u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The evolution of electronic structure of graphene nanoribbons (GNRs) as a function of the number of layers stacked together Is investigated using ab:initio density functional theory (DFT), including interlayer van der Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer AGNRs, exhibit three classes of band gaps depending on their width. In zigzag GNRs (ZGNRs), the geometry relaxation resulting from interlayer Interactions plays a crucial role in determining the magnetic polarization and the band structure. The antiferromagnetic (AF) interlayer coupling Is more stable compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF In-layer and AF interlayer coupling have a finite band gap, while ZGNRs with the FM In-layer and AF interlayer coupling do not have a band gap. The ground state:of the bilayer ZGNR is nonmagnetic with a small but finite band gap. The magnetic ordering is less stable in multilayer ZGNRs compared:. to that In single-layer ZGNRs. The quasiparticle GW corrections are smaller for bilayer GNRs compared to single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs to compared to single layer GNRs.
引用
收藏
页码:6096 / 6101
页数:6
相关论文
共 50 条
  • [31] Electronic structure of oxygen-functionalized armchair graphene nanoribbons
    Simbeck, Adam J.
    Gu, Deyang
    Kharche, Neerav
    Satyam, Parlapalli Venkata
    Avouris, Phaedon
    Nayak, Saroj K.
    PHYSICAL REVIEW B, 2013, 88 (03):
  • [32] Energetics and Electronic Structure of Encapsulated Graphene Nanoribbons in Carbon Nanotube
    Mandal, Bikash
    Sarkar, Sunandan
    Sarkar, Pranab
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (36): : 8568 - 8575
  • [33] Electronic Properties of Graphene Nanoribbons
    Lukomskaya, M., V
    Pavlovsky, O., V
    PHYSICS OF ATOMIC NUCLEI, 2020, 83 (11) : 1611 - 1614
  • [34] Electronic Properties of Graphene Nanoribbons
    M. V. Lukomskaya
    O. V. Pavlovsky
    Physics of Atomic Nuclei, 2020, 83 : 1611 - 1614
  • [35] Graphene Nanoribbons for Electronic Devices
    Geng, Zhansong
    Haehnlein, Bernd
    Granzner, Ralf
    Auge, Manuel
    Lebedev, Alexander A.
    Davydov, Valery Y.
    Kittler, Mario
    Pezoldt, Joerg
    Schwierz, Frank
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [36] Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects
    Orlof, A.
    Ruseckas, J.
    Zozoulenko, I. V.
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [37] The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons
    Kumar, S. Bala
    Jalil, M. B. A.
    Tan, S. G.
    Liang, Gengchiau
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (37)
  • [38] Electronic states in finite graphene nanoribbons: Effect of charging and defects
    Ijas, M.
    Ervasti, M.
    Uppstu, A.
    Liljeroth, P.
    van der Lit, J.
    Swart, I.
    Harju, A.
    PHYSICAL REVIEW B, 2013, 88 (07):
  • [39] Electronic cloaking effect of localized states induced in graphene nanoribbons
    Mendoza, Michel
    Lopez, Luis I. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (33)
  • [40] Electronic Specific Heat of Armchair Graphene Nanoribbons: Effect of subbands
    Nissimagoudar, A. S.
    Sankeshwar, N. S.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 1052 - 1053