Theory of decoherence-free fault-tolerant universal quantum computation

被引:429
|
作者
Kempe, J
Bacon, D
Lidar, DA [1 ]
Whaley, KB
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Ecole Natl Super Telecommun Bretagne, Paris, France
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 04期
关键词
D O I
10.1103/PhysRevA.63.042307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Universal quantum computation on decoherence-free subspaces and subsystems (DFSs) is examined with particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the existence of decoherence-free (noiseless) subsystems in the Markovian regime is derived here for the first time. A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective decoherence mechanisms arising from permutation symmetries of the system-bath coupling are examined within this framework. It is shown that in both cases universal quantum computation which always preserves the DFS (natural fault-tolerant computation) can be performed using only two-body interactions. This is in marked contrast to standard error correcting codes, where all known constructions using one- or two-body interactions must leave the code space during the on-time of the fault-tolerant gates. A further consequence of our universality construction is that a single exchange Hamiltonian can be used to perform universal quantum computation on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is naturally present in many quantum systems, is thus asymptotically universal.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [21] Universal quantum computation in decoherence-free subspaces with hot trapped ions
    Aolita, Leandro
    Davidovich, Luiz
    Kim, Kihwan
    Haeffner, Hartmut
    PHYSICAL REVIEW A, 2007, 75 (05)
  • [22] Roads towards fault-tolerant universal quantum computation
    Campbell, Earl T.
    Terhal, Barbara M.
    Vuillot, Christophe
    NATURE, 2017, 549 (7671) : 172 - 179
  • [23] Fault-Tolerant Operations for Universal Blind Quantum Computation
    Chien, Chia-Hung
    Van Meter, Rodney
    Kuo, Sy-Yen
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2015, 12 (01)
  • [24] Roads towards fault-tolerant universal quantum computation
    Earl T. Campbell
    Barbara M. Terhal
    Christophe Vuillot
    Nature, 2017, 549 : 172 - 179
  • [25] Realization of Universal Ion-Trap Quantum Computation with Decoherence-Free Qubits
    Monz, T.
    Kim, K.
    Villar, A. S.
    Schindler, P.
    Chwalla, M.
    Riebe, M.
    Roos, C. F.
    Haeffner, H.
    Haensel, W.
    Hennrich, M.
    Blatt, R.
    PHYSICAL REVIEW LETTERS, 2009, 103 (20)
  • [26] Universal quantum computation with quantum-dot cellular automata in decoherence-free subspace
    Xu, Z.Y.
    Fenga, M.
    Zhang, W.M.
    Quantum Information and Computation, 2008, 8 (10): : 0977 - 0986
  • [27] UNIVERSAL QUANTUM COMPUTATION WITH QUANTUM-DOT CELLULAR AUTOMATA IN DECOHERENCE-FREE SUBSPACE
    Xu, Z. Y.
    Feng, M.
    Zhang, W. M.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (10) : 977 - 986
  • [28] Universal quantum computation in a decoherence-free subspace for collective relaxation with transmon qubits
    Zhang, Zu-Rong
    Wu, Chun-Wang
    Li, Chun-Yan
    Dai, Hong-Yi
    Li, Cheng-Zu
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [29] Robustness of decoherence-free subspaces for quantum computation
    Bacon, D
    Lidar, DA
    Whaley, KB
    PHYSICAL REVIEW A, 1999, 60 (03): : 1944 - 1955
  • [30] Holonomic quantum computation in decoherence-free subspaces
    Wu, LA
    Zanardi, P
    Lidar, DA
    PHYSICAL REVIEW LETTERS, 2005, 95 (13)