Multi-task Optimisation for Multi-objective Feature Selection in Classification

被引:3
|
作者
Lin, Jiabin [1 ]
Chen, Qi [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
关键词
Feature selection; Multi-task optimisation; Multi-objective optimisation; Evolutionary computation;
D O I
10.1145/3520304.3528903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many effective evolutionary multi-objective feature selection algorithms have been developed in recent years. However, most of them tend to address feature selection tasks independently, while in real-world applications, many feature selection tasks are closely related to each other and share common knowledge. Multi-task optimisation, which aims to address multiple related optimisation tasks simultaneously and share common knowledge across them, can benefit feature selection. However, it is seldom considered for feature selection. In this work, we develop a multi-task multi-objective optimisation algorithm for feature selection in classification, with the aim of capturing and sharing common knowledge for related feature selection tasks. To evaluate the effectiveness of the proposed algorithm, we conduct a set of experiments to compare its performance with that of the single-task multi-objective feature selection algorithm on three sets of related feature selection tasks. With the help of knowledge transfer, our new algorithm significantly improved the feature selection performance is more efficient.
引用
收藏
页码:264 / 267
页数:4
相关论文
共 50 条
  • [31] MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR FILTER BASED FEATURE SELECTION IN CLASSIFICATION
    Xue, Bing
    Cervante, Liam
    Shang, Lin
    Browne, Will N.
    Zhang, Mengjie
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (04)
  • [32] Evolutionary Sequential Transfer Learning for Multi-Objective Feature Selection in Classification
    Lin, Jiabin
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 1019 - 1033
  • [33] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE Access, 2020, 8 : 106247 - 106263
  • [34] Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach
    Xue, Bing
    Zhang, Mengjie
    Browne, Will N.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1656 - 1671
  • [35] Interpretability of Music Classification as a Criterion for Evolutionary Multi-objective Feature Selection
    Vatolkin, Igor
    Rudolph, Guenter
    Weihs, Claus
    EVOLUTIONARY AND BIOLOGICALLY INSPIRED MUSIC, SOUND, ART AND DESIGN (EVOMUSART 2015), 2015, 9027 : 236 - 248
  • [36] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE ACCESS, 2020, 8 : 106247 - 106263
  • [37] Improved Crowding Distance in Multi-objective Optimization for Feature Selection in Classification
    Wang, Peng
    Xue, Bing
    Liang, Jing
    Zhang, Mengjie
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2021, 2021, 12694 : 489 - 505
  • [38] Multi-Task Learning for Multi-Objective Evolutionary Neural Architecture Search
    Cai, Ronghong
    Luo, Jianping
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1680 - 1687
  • [39] Multi-objective Optimization for Multi-task Allocation in Mobile Crowd Sensing
    Li, Mingchu
    Gao, Yuan
    Wang, Mingliang
    Guo, Cheng
    Tan, Xing
    16TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2019),THE 14TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC-2019),THE 9TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY, 2019, 155 : 360 - 368
  • [40] A Multi-objective / Multi-task Learning Framework Induced by Pareto Stationarity
    Momma, Michinari
    Dong, Chaosheng
    Liu, Jia
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,