POSITIVE EIGENFUNCTIONS OF A CLASS OF FRACTIONAL SCHRODINGER OPERATOR WITH A POTENTIAL WELL

被引:0
|
作者
Gu, Guangze [1 ]
Yang, Zhipeng [2 ,3 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
[3] Georg August Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
基金
中国国家自然科学基金;
关键词
OBSTACLE PROBLEM; EQUATION; REGULARITY; UNIQUENESS; BOUNDARY; BEHAVIOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following eigenvalue problem (-Delta)(s) u + lambda g(x) u = alpha u, u is an element of H-s (R-N), N >= 3, where s is an element of (0,1), alpha, lambda is an element of R and g(x) 0 on (Omega) over bar, g (x) is an element of (0, 1] on R-N\(Omega) over bar and lim(vertical bar x vertical bar ->infinity) g (x) = 1 for some bounded open set Omega subset of R-N. We discuss the existence and some properties of the first two eigenvalues for this problem, which extend some classical results for semilinear Schrodinger equations to the nonlocal fractional setting.
引用
收藏
页码:123 / 150
页数:28
相关论文
共 50 条
  • [31] The eigenfunctions of a Schrodinger operator associated to the root system An-1
    Sawyer, P
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (197): : 71 - 86
  • [32] FUNDAMENTAL GAPS OF THE FRACTIONAL SCHRODINGER OPERATOR
    Bao, Weizhu
    Ruan, Xinran
    Shen, Jie
    Sheng, Changtao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) : 447 - 471
  • [33] On the Convergence of the Fractional Relativistic Schrodinger Operator
    Ambrosio, V.
    Bueno, H.
    Medeiros, A. H. S.
    Pereira, G. A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (04):
  • [34] On the Convergence of the Fractional Relativistic Schrodinger Operator
    V. Ambrosio
    H. Bueno
    A. H. S. Medeiros
    G. A. Pereira
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [35] Exact solutions of the Schrodinger equation for a class of hyperbolic potential well
    Wang, Xiao-Hua
    Chen, Chang-Yuan
    You, Yuan
    Lu, Fa-Lin
    Sun, Dong-Sheng
    Dong, Shi-Hai
    CHINESE PHYSICS B, 2022, 31 (04)
  • [36] Positive solutions for nonlinear Schrodinger equations with deepening potential well
    Wang, Zhengping
    Zhou, Huan-Song
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (03) : 545 - 573
  • [38] Estimate of Fourier transforms with respect to the system of generalized eigenfunctions of the Schrodinger operator with Stummel-type potential
    Kritskov, LV
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 454 - 461
  • [39] GROUND STATE SOLUTIONS TO A CLASS OF FRACTIONAL SCHRODINGER EQUATION WITH HARDY POTENTIAL
    Du, Xinsheng
    Wang, Shanshan
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [40] Existence of weak solutions for a class of fractional Schrodinger equations with periodic potential
    Pu, Yang
    Liu, Jiu
    Tang, Chun-Lei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (03) : 465 - 482