All-solid-state Li-metal batteries: role of blending PTFE with PEO and LiTFSI salt as a composite electrolyte with enhanced thermal stability

被引:23
|
作者
Jokhakar, Deep A. [1 ]
Puthusseri, Dhanya [1 ]
Manikandan, Palanisamy [1 ]
Li, Zheng [1 ]
Moon, Jooho [1 ]
Weng, Hsin-Jan [1 ]
Pol, Vilas G. [1 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA
来源
SUSTAINABLE ENERGY & FUELS | 2020年 / 4卷 / 05期
关键词
POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; POLY(ETHYLENE OXIDE); ION-TRANSPORT; LITHIUM; MECHANISMS; BEHAVIOR;
D O I
10.1039/d0se00013b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the ionic conductivity and the thermal stability of solid electrolytes is crucial for the development of all-solid-state batteries. Here, we report polytetrafluoroethylene (PTFE) as an additive to improve the ionic conductivity and thermal stability of polyethylene oxide (PEO) based electrolytes. Electrochemical Impedance Spectroscopy (EIS) measurements for composite electrolytes with varying ratios of PEO and PTFE confirm the enhancement in the ionic conductivity at both room temperature and 60 degrees C. From the EIS measurements of electrolytes at room temperature, PEO100 showed the lowest ion conductivity (2.25 x 10(-8) S cm(-1)), while electrolytes with added PTFE showed a higher ion conductivity (6.62 x 10(-8) S cm(-1)). The charge-discharge measurement confirms that adding PTFE improved the capacity from 139 mA h g(-1) to 163 mA h g(-1) with cycling stability. Furthermore, the thermal stability of PTFE blended PEO composite electrolyte is enhanced, resulting in lower heat liberation by a factor of two compared with PEO electrolyte. Our results show that PTFE-PEO composite has the potential to be used as a solid electrolyte in lithium metal batteries.
引用
收藏
页码:2229 / 2235
页数:7
相关论文
共 50 条
  • [11] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482
  • [12] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    Journal of Power Sources, 2022, 482
  • [13] Integrated Design of a Functional Composite Electrolyte and Cathode for All-Solid-State Li Metal Batteries
    Zhang, Zhenghang
    Fan, Rongzheng
    Huang, Saifang
    Zhao, Jie
    Zhang, Yudong
    Dai, Weiji
    Zhao, Cuijiao
    Song, Xin
    Cao, Peng
    BATTERIES-BASEL, 2023, 9 (06):
  • [14] Triple-doped Argyrodite Sulfide Electrolyte with Improved Air Stability and Lithium Compatibility for All-Solid-State Li-Metal Batteries
    Choi, Yeong Jun
    Hwang, Yun Ji
    Kim, Sun-I.
    Kwak, Myung-Jun
    Kim, Taehyo
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [15] Superionic Fluorinated Halide Solid Electrolytes for Highly Stable Li-Metal in All-Solid-State Li Batteries
    Yu, Tianwei
    Liang, Jianwen
    Luo, Liang
    Wang, Limin
    Zhao, Feipeng
    Xu, Guofeng
    Bai, Xiangtao
    Yang, Rong
    Zhao, Shangqian
    Wang, Jiantao
    Yu, Jinqiu
    Sun, Xueliang
    ADVANCED ENERGY MATERIALS, 2021, 11 (36)
  • [16] Synergistic Effect of Sn-Substituted Argyrodite Solid Electrolyte with Enhanced Air Stability and Li Metal Compatibility for All-Solid-State Li Metal Batteries
    Hwang, Yun Ji
    Choi, Yeong Jun
    Kim, Sun-, I
    Park, Minjoon
    Kim, Taehyo
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (20): : 9451 - 9459
  • [17] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [18] Stability of the Argyrodite Electrolyte in Li-In Based All-Solid-State Batteries
    Huang, Di
    Liu, Gao
    Tong, Wei
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (22): : 10376 - 10385
  • [19] Polymer/ceramic interfacial layer enables stable cycling of all-solid-state Li-metal batteries with sulfide electrolyte
    Xiao, Kexin
    Ren, Pengfei
    Wang, Xiaofen
    Chen, Hong
    Zhou, Qiongyu
    MATERIALS LETTERS, 2024, 362
  • [20] A Highly Ion-Conductive Solid Polymer Electrolyte with Good Thermal Stability and Nonflammability for All-Solid-State Li Metal Batteries
    Liu, Yang
    Wang, Lei
    Liu, Lingwang
    Xue, Jiangyan
    Zhang, Haiyang
    Xu, Jingjing
    Wu, Xiaodong
    ENERGY TECHNOLOGY, 2023, 11 (04)