T-DUAL RICKART MODULES

被引:0
|
作者
Atani, S. Ebrahimi [1 ]
Khoramdel, M. [1 ]
Hesari, S. Dolati Pish [1 ]
机构
[1] Univ Guilan, Dept Math, POB 1914, Rasht, Iran
关键词
Dual Rickart modules; t-lifting modules; t-dual Baer modules; T-dual Rickart modules; strongly T-dual Rickart modules; BAER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notions of T-dual Rickart and strongly T dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (respectively, finitely generated free) R-module is T-dual Rickart if and only if (Z) over bar (2) (R) is a direct summand of R and End((Z) over bar (2)(R)) is a semisimple (resp. regular) ring. It is shown that, while a direct summand of a (strongly) T-dual Rickart module inherits the property, direct sums of T-dual Rickart modules do not. Moreover, when a direct sum of T-dual Rickart modules is T-dual Rickart, is included. Examples illustrating the results are presented.
引用
收藏
页码:627 / 642
页数:16
相关论文
共 50 条
  • [11] DUAL RICKART (BAER) MODULES AND PRERADICALS
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. r. moniri
    JOURNAL OF ALGEBRAIC SYSTEMS, 2024, 12 (01):
  • [12] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [13] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229
  • [14] Effective theories of two T-dual theories are also T-dual
    Ljubica Davidović
    Branislav Sazdović
    The European Physical Journal C, 2019, 79
  • [15] Effective theories of two T-dual theories are also T-dual
    Davidovic, Ljubica
    Sazdovic, Branislav
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (09):
  • [16] Fully invariant submodules for constructing dual Rickart modules and dual Baer modules
    Amouzegar, Tayyabeh
    Hamzekolaee, Ali Reza Moniri
    Tercan, Adnan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 295 - 306
  • [17] Σ-Rickart modules
    Lee, Gangyong
    Medina-Barcenas, Mauricio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [18] A new approach to (dual) Rickart modules via isomorphisms
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. R. Moniri
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (02): : 5 - 18
  • [19] RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4005 - 4027
  • [20] ON RICKART MODULES
    Agayev, N.
    Halicioglu, S.
    Harmanci, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02) : 433 - 445