Digital twin-driven decision support system for opportunistic preventive maintenance scheduling in manufacturing

被引:10
|
作者
Neto, Anis Assad [1 ]
Carrijo, Bruna Sprea [1 ]
Romanzini Brock, Joao Guilherme [1 ]
Deschamps, Fernando [1 ,2 ]
de Lima, Edson Pinheiro [1 ,3 ]
机构
[1] Pontificia Univ Catolica Parana, Imaculada Conceicao 1155, BR-80215901 Curitiba, Parana, Brazil
[2] Univ Fed Parana, Francisco Heraclito Dos Santos 100, BR-81530000 Curitiba, Parana, Brazil
[3] Univ Tecnol Fed Parana, BR-85503390 Pato Branco, Brazil
来源
FAIM 2021 | 2021年 / 55卷
关键词
digital twin; preventive maintenance; simulation; industry; 4.0; DESIGN SCIENCE; MODEL; COST;
D O I
10.1016/j.promfg.2021.10.060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preventive maintenance interventions are scheduled in industrial systems to prevent machine failures and breakdowns, which are associated with the incurrence of repair, unavailability, and quality-related costs. The execution of such interventions, however, generally represents a penalty to a manufacturing system's production throughput due to machine interruption requirements. By the use of a digital twin architecture, we develop a decision support system to schedule preventive maintenance interventions with the aim of minimizing production throughout penalties via the exploitation of real-time opportunities such as supply shortages, momentary machine idleness or machine breakdowns. The decision support system has its application demonstrated by a case in a furniture manufacturer in the State of Santa Catarina- Brazil. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 50 条
  • [21] Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model
    Leng Jiewu
    Liu Qiang
    Ye Shide
    Jing Jianbo
    Wang Yan
    Zhang Chaoyang
    Zhang Ding
    Chen Xin
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2020, 63
  • [22] Application framework of digital twin-driven product smart manufacturing system: A case study of aeroengine blade manufacturing
    Zhang, Xuqian
    Zhu, Wenhua
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (05):
  • [23] Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground
    Seipolt, Arne
    Buschermöhle, Ralf
    Haag, Vladislav
    Hasselbring, Wilhelm
    Höfinghoff, Maximilian
    Schumacher, Marcel
    Wilbers, Henrik
    Discover Internet of Things, 2024, 4 (01):
  • [24] A digital twin-driven production management system for production workshop
    Ma, Jun
    Chen, Huimin
    Zhang, Yu
    Guo, Hongfei
    Ren, Yaping
    Mo, Rong
    Liu, Luyang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (5-6): : 1385 - 1397
  • [25] A digital twin-driven production management system for production workshop
    Jun Ma
    Huimin Chen
    Yu Zhang
    Hongfei Guo
    Yaping Ren
    Rong Mo
    Luyang Liu
    The International Journal of Advanced Manufacturing Technology, 2020, 110 : 1385 - 1397
  • [26] Enhancing production system resilience with digital twin-driven management
    Sanchez, Marisa A.
    Rossit, Daniel
    Tohme, Fernando
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024,
  • [27] Digital Twin-driven machining process for thin-walled part manufacturing
    Zhu, Zexuan
    Xi, Xiaolin
    Xu, Xun
    Cai, Yonglin
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 59 : 453 - 466
  • [28] Application Research of Digital Twin-Driven Ship Intelligent Manufacturing System: Pipe Machining Production Line
    Wu, Qingcai
    Mao, Yunsheng
    Chen, Jianxun
    Wang, Chong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (03)
  • [29] Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework
    Mi, Shanghua
    Feng, Yixiong
    Zheng, Hao
    Wang, Yong
    Gao, Yicong
    Tan, Jianrong
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 58 : 329 - 345
  • [30] Digital twin-driven smart supply chain
    Wang, Lu
    Deng, Tianhu
    Shen, Zuo-Jun Max
    Hu, Hao
    Qi, Yongzhi
    FRONTIERS OF ENGINEERING MANAGEMENT, 2022, 9 (01) : 56 - 70