Massive spinning particles and the geometry of null curves

被引:58
|
作者
Nersessian, A [1 ]
Ramos, E
机构
[1] Joint Inst Nucl Res, Bogolyubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
关键词
D O I
10.1016/S0370-2693(98)01408-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the simplest geometrical particle model associated with null paths in four-dimensional Minkowski space-time. The action is given by the pseudo-arclength of the particle worldline. We show that the reduced classical phase space of this system coincides with that of a massive spinning particle of spin s = alpha(2)/M, where M is the particle mass, and alpha is the coupling constant in front of the action. Consistency of the associated quantum theory requires the spin s to be an integer or half integer number, thus implying a quantization condition on the physical mass M of the particle. Then, standard quantization techniques show that the corresponding Hilbert spaces are solution spaces of the standard relativistic massive wave equations. Therefore this geometrical particle model provides us with an unified description of Dirac fermions (s = 1/2) and massive higher spin fields. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [21] Non-commutative Geometry in Massless and Massive Particles
    Pahlavani, M. R.
    Pourhassan, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (06) : 1195 - 1199
  • [22] Non-commutative Geometry in Massless and Massive Particles
    M. R. Pahlavani
    B. Pourhassan
    International Journal of Theoretical Physics, 2010, 49 : 1195 - 1199
  • [23] NULL SPINNING STRINGS
    GAMBOA, J
    RAMIREZ, C
    RUIZALTABA, M
    NUCLEAR PHYSICS B, 1990, 338 (01) : 143 - 187
  • [24] Exact solutions for the motion of spinning massive particles in conformally flat spacetimes
    Asenjo, Felipe A.
    Hojman, Sergio A.
    XIX CHILEAN PHYSICS SYMPOSIUM 2014, 2016, 720
  • [25] Natural selection rules: new positivity bounds for massive spinning particles
    Davighi, Joe
    Melville, Scott
    You, Tevong
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [26] Natural selection rules: new positivity bounds for massive spinning particles
    Joe Davighi
    Scott Melville
    Tevong You
    Journal of High Energy Physics, 2022
  • [28] Spinning geometry = Twisted geometry
    Freidel, Laurent
    Ziprick, Jonathan
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (04)
  • [29] Spinning massive test particles in cosmological and general static spherically symmetric spacetimes
    Zalaquett, Nicolas
    Hojman, Sergio A.
    Asenjo, Felipe A.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (08)
  • [30] Null Hybrid Curves and Some Characterizations of Null Hybrid Bertrand Curves
    Alo, Jeta
    SYMMETRY-BASEL, 2025, 17 (02):