Recent advances in high temperature electrolysis using solid oxide fuel cells: A review

被引:805
|
作者
Laguna-Bercero, M. A. [1 ]
机构
[1] Univ Zaragoza, CSIC, ICMA, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
关键词
Solid oxide electrolysis cell; Hydrogen; High temperature electrolysis; Reversible SOFC; SOEC; Zirconia; YTTRIA-STABILIZED ZIRCONIA; HYDROGEN-PRODUCTION; STEAM ELECTROLYSIS; POLARIZATION BEHAVIOR; CONDUCTING ELECTROLYTE; WATER ELECTROLYSIS; PERFORMANCE; PROTON; DEGRADATION; CATHODE;
D O I
10.1016/j.jpowsour.2011.12.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New and more efficient energy conversion systems are required in the near future, due in part to the increase in oil prices and demand and also due to global warming. Fuel cells and hybrid systems present a promising future but in order to meet the demand, high amounts of hydrogen will be required. Until now, probably the cleanest.method of producing hydrogen has been water electrolysis. In this field, solid oxide electrolysis cells (SOEC) have attracted a great interest in the last few years, as they offer significant power and higher efficiencies compared to conventional low temperature electrolysers. Their applications, performances and material issues will be reviewed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4 / 16
页数:13
相关论文
共 50 条
  • [31] High Temperature Solid Oxide Fuel Cells(SOFC)
    魏秋明
    朱时珍
    夏定国
    刘庆国
    JournalofRareEarths, 1993, (03) : 174 - 179
  • [32] Solid oxide electrolytes for high temperature fuel cells
    Yokokawa, H
    Sakai, N
    Horita, T
    Yamaji, K
    Brito, ME
    ELECTROCHEMISTRY, 2005, 73 (01) : 20 - 30
  • [33] High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells
    Zheng, Yifeng
    Zhou, Juan
    Zhang, Lan
    Liu, Qinglin
    Pan, Zehua
    Chan, Siew Hwa
    ELECTROCHIMICA ACTA, 2018, 280 : 206 - 215
  • [34] HIGH-TEMPERATURE FUEL AND STEAM ELECTROLYSIS CELLS USING PROTON CONDUCTIVE SOLID ELECTROLYTES
    IWAHARA, H
    UCHIDA, H
    MAEDA, N
    JOURNAL OF POWER SOURCES, 1982, 7 (03) : 293 - 301
  • [35] Advances in Solid Oxide Fuel Cells: Review of Progress through Three Decades of the International Symposia on Solid Oxide Fuel Cells
    Minh, N. Q.
    Mizusaki, J.
    Singhal, S. C.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 63 - 73
  • [36] Recent advances in carbon-resistant anodes for solid oxide fuel cells
    Zhang, Wei
    Wei, Jialu
    Yin, Fusheng
    Sun, Chunwen
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (10) : 1943 - 1991
  • [37] Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis
    Sohal, M. S.
    O'Brien, J. E.
    Stoots, C. M.
    Sharma, V. I.
    Yildiz, B.
    Virkar, A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (01):
  • [38] Polarization behavior of high temperature solid oxide electrolysis cells (SOEC)
    Momma, A
    Kato, T
    Kaga, Y
    Nagata, S
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1997, 105 (05) : 369 - 373
  • [39] DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
    Sohal, M. S.
    O'Brien, J. E.
    Stoots, C. M.
    Sharma, V. I.
    Yildiz, B.
    Virkar, A.
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1, 2010, : 377 - 387
  • [40] Polarization behavior of high temperature solid oxide electrolysis cells (SOEC)
    Momma, Akihiko
    Kato, Tohru
    Kaga, Yasuo
    Nagata, Susumu
    Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 1997, 105 (1221): : 369 - 373