Spin-reorientation critical dynamics in the two-dimensional X Y model with a domain wall

被引:1
|
作者
Lei, X. W. [1 ]
Zhou, N. J. [2 ]
He, Y. Y. [3 ]
Zheng, B. [3 ,4 ]
机构
[1] Aba Teachers Univ, Inst Elect Informat & Automat, Wenchuan 623002, Peoples R China
[2] Hangzhou Normal Univ, Dept Phys, Hangzhou 311121, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
NONEQUILIBRIUM CRITICAL-DYNAMICS; DEPINNING TRANSITION; CREEP;
D O I
10.1103/PhysRevE.99.022129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In recent years, static and dynamic properties of non-180 degrees domain walls in magnetic materials have attracted a great deal of interest. In this paper, spin-reorientation critical dynamics in the two-dimensional XY model is investigated with Monte Carlo simulations and theoretical analyses based on the Langevin equation. At the Kosterlitz-Thouless phase transition, the dynamic scaling behaviors of the magnetization and the two-time correlation function are carefully analyzed, and critical exponents are accurately determined. When the initial value of the angle between adjacent domains is slightly lower than pi, a critical exponent is introduced to characterize the abnormal power-law increase of the magnetization in the horizontal direction inside the domain interface, which is measured to be psi = 0.0568(8). In addition, the relation psi = eta/2z is analytically deduced from the Langevin dynamics in the long-wavelength approximation, well consistent with numerical results.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Spot Self-Replication and Dynamics for the Schnakenburg Model in a Two-Dimensional Domain
    Kolokolnikov, T.
    Ward, M. J.
    Wei, J.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (01) : 1 - 56
  • [42] Spot Self-Replication and Dynamics for the Schnakenburg Model in a Two-Dimensional Domain
    T. Kolokolnikov
    M. J. Ward
    J. Wei
    Journal of Nonlinear Science, 2009, 19 : 1 - 56
  • [43] Intrinsic persistent spin texture in two-dimensional T-XY (X, Y = P, As, Sb, Bi; X ≠ Y)
    Guo, San-Dong
    Feng, Xu-Kun
    Huang, Dong
    Chen, Shaobo
    Wang, Guangzhao
    Ang, Yee Sin
    PHYSICAL REVIEW B, 2023, 108 (07)
  • [44] Disorder, order, and domain wall roughening in the two-dimensional random field Ising model
    Seppala, ET
    Petaja, V
    Alava, MJ
    PHYSICAL REVIEW E, 1998, 58 (05) : R5217 - R5220
  • [46] Two-dimensional lattice Gross-Neveu model with domain-wall fermions
    Izubuchi, T
    Nagai, K
    PHYSICAL REVIEW D, 2000, 61 (09)
  • [47] Disorder, order, and domain wall roughening in the two-dimensional random field Ising model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (5-A):
  • [48] Dynamics of inhomogeneous excitations in the one -dimensional isotropic X - Y model of spin S = ½
    Berim, G.O.
    Fizika Nizkikh Temperatur (Kiev), 1991, 17 (05):
  • [49] CRITICAL-DYNAMICS OF THE PURE AND DILUTED TWO-DIMENSIONAL ISING-MODEL
    LAGE, EJS
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (04): : L91 - L95
  • [50] Charge and spin dynamics in a two-dimensional electron gas
    Pugzlys, A.
    Rizo, P. J.
    Ivanin, K.
    Slachter, A.
    Reuter, D.
    Wieck, A. D.
    van der Wal, C. H.
    van Loosdrecht, P. H. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (29)