A 3D Iris Scanner From a Single Image Using Convolutional Neural Networks

被引:14
|
作者
Benalcazar, Daniel P. [1 ,3 ]
Zambrano, Jorge E. [1 ,3 ]
Bastias, Diego [1 ,3 ]
Perez, Claudio A. [1 ,3 ]
Bowyer, Kevin W. [2 ]
机构
[1] Univ Chile, Dept Elect Engn, Santiago 8370451, Chile
[2] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[3] Univ Chile, Adv Min Technol Ctr, Santiago 8370451, Chile
关键词
Three-dimensional displays; Iris recognition; Solid modeling; Iris; Estimation; Image reconstruction; Two dimensional displays; 3D iris reconstruction; 3D iris scanner; biometrics; iris recognition; depth estimation; RECOGNITION; MODEL;
D O I
10.1109/ACCESS.2020.2996563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A 3D model of the human iris provides an additional degree of freedom in iris recognition, which could help identify people in larger databases, even when only a piece of the iris is available. Previously, we reported developing a 3D iris scanner that uses 2D images of the iris from multiple perspectives to reconstruct a 3D model of the iris. This paper focuses on the development of a 3D iris scanner from a single image by means of a Convolutional Neural Network (CNN). The method is based on a depth-estimation CNN for the 3D iris model. A dataset of 26,520 real iris images from 120 subjects, and a dataset of 72,000 synthetic iris images with their aligned depthmaps were created. With these datasets, we trained and compared the depth estimation capabilities of available CNN architectures. We analyzed the performance of our method to estimate the iris depth in multiple ways: using real step pyramid printed 3D models, comparing the results to those of a test set of synthetic images, comparing the results to those of the OCT scans from both eyes of one subject, and generating the 3D rubber sheet from the 3D iris model proving the correspondence with the resulting 2D rubber sheet and binary codes. On a preliminary test the proposed 3D rubber sheet model increased iris recognition performance by 48% with respect to the standard 2D iris code. Other contributions include assessing the scanning resolution, reducing the acquisition and processing time to produce the 3D iris model, and reducing the complexity of the image acquisition system.
引用
收藏
页码:98584 / 98599
页数:16
相关论文
共 50 条
  • [31] Efficient Violence Detection Using 3D Convolutional Neural Networks
    Li, Ji
    Jiang, Xinghao
    Sun, Tanfeng
    Xu, Ke
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,
  • [32] Lung Cancer Detection using 3D Convolutional Neural Networks
    Pradhan, Adarsh
    Sarma, Bhaskarjyothi
    Dey, Bhiman Kr
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 765 - 770
  • [33] Pose prediction using 3D deep convolutional neural networks
    Wallach, Izhar
    Dzamba, Michael
    Schrodl, Stefan
    Rampasek, Ladislav
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [34] Violence Detection in Video by Using 3D Convolutional Neural Networks
    Ding, Chunhui
    Fan, Shouke
    Zhu, Ming
    Feng, Weiguo
    Jia, Baozhi
    ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT II, 2014, 8888 : 551 - 558
  • [35] SIGN LANGUAGE RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Jie
    Zhou, Wengang
    Li, Houqiang
    Li, Weiping
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [36] Multi-person 3D pose estimation from 3D cloud data using 3D convolutional neural networks
    Vasileiadis, Manolis
    Bouganis, Christos-Savvas
    Tzovaras, Dimitrios
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 185 : 12 - 23
  • [37] 3D Convolutional Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks for Classification of Industrial Parts
    Merino, Ibon
    Azpiazu, Jon
    Remazeilles, Anthony
    Sierra, Basilio
    SENSORS, 2021, 21 (04) : 1 - 18
  • [38] Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation
    Chen, Jianxu
    Yang, Lin
    Zhang, Yizhe
    Alber, Mark
    Chen, Danny Z.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [39] Single Image Reflection Removal Using Convolutional Neural Networks
    Chang, Yakun
    Jung, Cheolkon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1954 - 1966
  • [40] Automatic 3D Building Reconstruction from OpenStreetMap and LiDAR Using Convolutional Neural Networks
    Barranquero, Marcos
    Olmedo, Alvaro
    Gomez, Josefa
    Tayebi, Abdelhamid
    Javier Hellin, Carlos
    Saez de Adana, Francisco
    SENSORS, 2023, 23 (05)