Non-linear loop invariant generation using Grobner bases

被引:75
|
作者
Sankaranarayanan, S [1 ]
Sipma, HB [1 ]
Manna, Z [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
program analysis; verification; invariant generation; symbolic computation; ideals; Grobner bases; constraint programming;
D O I
10.1145/982962.964028
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new technique for the generation of non-linear (algebraic) invariants of a program. Our technique uses the theory of ideals over polynomial rings to reduce the non-linear invariant generation problem to a numerical constraint solving problem. So far, the literature on invariant generation has been focussed on the construction of linear invariants for linear programs. Consequently, there has been little progress toward non-linear invariant generation. In this paper, we demonstrate a technique that encodes the conditions for a given template assertion being an invariant into a set of constraints, such that all the solutions to these constraints correspond to non-linear (algebraic) loop invariants of the program. We discuss some trade-offs between the completeness of the technique and the tractability of the constraint-solving problem generated. The application of the technique is demonstrated on a few examples.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 50 条
  • [41] PARTIAL GROBNER BASES FOR MULTIOBJECTIVE INTEGER LINEAR OPTIMIZATION
    Blanco, Victor
    Puerto, Justo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 571 - 595
  • [42] Non-linear duality invariant partially massless models?
    Cherney, D.
    Deser, S.
    Waldron, A.
    Zahariade, G.
    PHYSICS LETTERS B, 2016, 753 : 293 - 296
  • [43] THE INVARIANT SOLUTIONS OF NON-LINEAR DIRAC-EQUATION
    FUSHCHICH, VI
    SHTELEN, VM
    DOKLADY AKADEMII NAUK SSSR, 1983, 269 (01): : 88 - 92
  • [44] Grobner Bases and mathematical exercises generation with nondetermined structure
    Araujo, Isabel
    Smirnov, Georgi
    Almeida, Jose Joao
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [45] ON THE PROBLEM OF INVARIANT MULTIFORMITIES OF CERTAIN NON-LINEAR SYSTEMS
    PETRISHIN, RI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (02): : 22 - 24
  • [46] Structural identifiability of non-linear systems using linear/non-linear splitting
    Chapman, MJ
    Godfrey, KR
    Chappell, MJ
    Evans, ND
    INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (03) : 209 - 216
  • [47] NON-LINEAR PROCESSING OF SHAPE-INVARIANT IMAGES
    PICA, AP
    CARLSON, CR
    KLOPFENSTEIN, RW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1786 - 1786
  • [48] DETERMINATION OF THE INVARIANT VECTOR FIELD IN NON-LINEAR FIELD
    ASANO, N
    PROGRESS OF THEORETICAL PHYSICS, 1989, 82 (06): : 1023 - 1031
  • [49] Linear Algebra for Computing Grobner Bases of Linear Recursive Multidimensional Sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 61 - 68
  • [50] Testing Linear-Invariant Non-linear Properties: A Short Report
    Bhattacharyya, Arnab
    Chen, Victor
    Sudan, Madhu
    Xie, Ning
    PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 260 - +