GENERALIZED SOLUTIONS TO A CHEMOTAXIS-NAVIER STOKES SYSTEM WITH ARBITRARY SUPERLINEAR DEGRADATION

被引:23
|
作者
Ding, Mengyao [1 ]
Lankeit, Johannes [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
基金
中国国家自然科学基金;
关键词
chemotaxis; fluid; logistic source; generalized solution; eventual smoothness; KELLER-SEGEL MODELS; BLOW-UP; GLOBAL EXISTENCE; WEAK SOLUTIONS; CAUCHY-PROBLEM; FLUID SYSTEM; BOUNDEDNESS; ENHANCEMENT; SOLVABILITY; EQUATIONS;
D O I
10.1137/21M140907X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study a chemotaxis-Navier Stokes model in a two-dimensional setting as follows: {nt u " Vn = V " (nVe)+ f (n); et u " Ve = c +n; ut +K(u " V)u = + VP + nVO; V " u = 0}. Motivated by a recent work due to Winkler, we aim at investigating generalized solvability for the model without imposing a critical superlinear exponent restriction on the logistic source function f. Specifically, it is proven in the present work that there exists a triple of integrable functions (n, c, u) solving the system globally in a generalized sense provided that f E Cl ([O, Do)) satisfies f (0) > 0 and f (n) < rn n7 (n > 0) with any 7 > 1. Our result indicates that persistent Dirac-type singularities can be ruled out in our model under the aforementioned mild assumption on f. After giving the existence result for the system, we also show that the generalized solution exhibits eventual smoothness as long as it/r is sufficiently large.
引用
收藏
页码:1022 / 1052
页数:31
相关论文
共 50 条
  • [21] A Smallness Condition Ensuring Boundedness in a Two-dimensional Chemotaxis-Navier—Stokes System involving Dirichlet Boundary Conditions for the Signal
    Yu Lan Wang
    Michael Winkler
    Zhao Yin Xiang
    Acta Mathematica Sinica, English Series, 2022, 38 : 985 - 1001
  • [22] Global solutions to the free boundary value problem of a chemotaxis-Navier-Stokes system
    Hou, Qianqian
    NONLINEARITY, 2023, 36 (05) : 2310 - 2370
  • [23] TIME PERIODIC SOLUTIONS FOR A TWO-SPECIES CHEMOTAXIS-NAVIER-STOKES SYSTEM
    Liu, Changchun
    Li, Pingping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08): : 4567 - 4585
  • [24] Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system
    Winkler, Michael
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05): : 1329 - 1352
  • [25] GLOBAL WEAK SOLUTIONS TO A CHEMOTAXIS-NAVIER-STOKES SYSTEM IN R3
    Kang, Kyungkeun
    Lee, Jihoon
    Winkler, Michael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (11) : 5201 - 5222
  • [26] CONVERGENCE RATES OF SOLUTIONS FOR A TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES SYSTEM
    Zhang, Qingshan
    Li, Yuxiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2751 - 2759
  • [27] Global boundedness of solutions for the chemotaxis-Navier-Stokes system in R2
    Li, Yan
    Li, Yuxiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6570 - 6613
  • [28] Global existence and asymptotic behavior of solutions for a fractional chemotaxis-Navier-Stokes system
    Fontecha-Medina, Miguel A.
    Villamizar-Roa, Elder J.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 19 (04) : 285 - 309
  • [29] Small-convection limit for two-dimensional chemotaxis-Navier–Stokes system with logarithmic sensitivity and logistic-type source
    Jie Wu
    Boundary Value Problems, 2022
  • [30] NUMERICAL ANALYSIS FOR A CHEMOTAXIS-NAVIER-STOKES SYSTEM
    Duarte-Rodriguez, Abelardo
    Rodriguez-Bellido, Maria Angeles
    Rueda-Gomez, Diego A.
    Villamizar-Roa, Elder J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S417 - S445