Discrete-Time Neural Inverse Optimal Control for Nonlinear Systems via Passivation

被引:31
|
作者
Ornelas-Tellez, Fernando [1 ]
Sanchez, Edgar N. [2 ]
Loukianov, Alexander G. [2 ]
机构
[1] Univ Michoacana, Div Estudios Posgrad, Fac Ingn Elect, Morelia 58030, Michoacan, Mexico
[2] IPN, Ctr Invest & Estudios Avanzados, Unidad Guadalajara, Guadalajara 45019, Jalisco, Mexico
关键词
Control Lyapunov function; inverse optimal control; passivity; recurrent neural network; trajectory tracking; STABILIZATION; DESIGN; CONVERGENCE; DRIVEN; NOISE;
D O I
10.1109/TNNLS.2012.2200501
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a discrete-time inverse optimal neural controller, which is constituted by combination of two techniques: 1) inverse optimal control to avoid solving the Hamilton-Jacobi-Bellman equation associated with nonlinear system optimal control and 2) on-line neural identification, using a recurrent neural network trained with an extended Kalman filter, in order to build a model of the assumed unknown nonlinear system. The inverse optimal controller is based on passivity theory. The applicability of the proposed approach is illustrated via simulations for an unstable nonlinear system and a planar robot.
引用
收藏
页码:1327 / 1339
页数:13
相关论文
共 50 条
  • [41] New neural adaptive control of nonlinear discrete-time systems
    Zhu, Y
    Qian, JX
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 525 - 526
  • [42] Synchronization of complex networks with nonidentical nodes via discrete-time neural inverse optimal pinning control
    Vega, Carlos J.
    Sanchez, Edgar N.
    Suarez, Oscar J.
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [43] Optimal Fixed-Point Tracking Control for Discrete-Time Nonlinear Systems via ADP
    Ruizhuo Song
    Liao Zhu
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (03) : 657 - 666
  • [44] On the optimal control of linear discrete-time systems via discrete orthogonal functions
    Indian Inst of Technology, Kharagpur, India
    J Franklin Inst, 4 (731-738):
  • [45] On the optimal control of linear discrete-time systems via discrete orthogonal functions
    Mohan, BM
    Datta, KB
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1998, 335B (04): : 731 - 738
  • [46] Optimal control for nonlinear discrete-time time delay systems with saturating actuators
    Wang, Tao
    Luo, Yan-Hong
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2014, 35 (04): : 461 - 465
  • [47] Inverse control of discrete-time multivariable systems
    Bronnikov, AV
    Borovkov, AA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2002, 339 (03): : 335 - 345
  • [48] Optimal control for nonlinear discrete-time systems: A successive approximation approach
    Tang, GY
    Wang, HH
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 344 - 349
  • [49] Approximate optimal output tracking control for nonlinear discrete-time systems
    Tang, Gong-You
    Liu, Yi-Min
    Zhang, Yong
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (03): : 400 - 405
  • [50] Sensitivity approach to optimal control for affine nonlinear discrete-time systems
    Tang, GY
    Xie, N
    Liu, P
    ASIAN JOURNAL OF CONTROL, 2005, 7 (04) : 448 - 454