Dimensionality reduction for semi-supervised face recognition

被引:0
|
作者
Du, WW [1 ]
Inoue, K [1 ]
Urahama, K [1 ]
机构
[1] Kyushu Univ, Fukuoka 8158540, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A dimensionality reduction technique is presented for semi-supervised face recognition where image data are mapped into a low dimensional space with a spectral method. A mapping of learning data is generalized to a new datum which is classified in the low dimensional space with the nearest neighbor rule. The same generalization is also devised for regularized regression methods which work in the original space without dimensionality reduction. It is shown with experiments that the spectral mapping method outperforms the regularized regression. A modification scheme for data similarity matrices on the basis of label information and a simple selection rule for data to be labeled are also devised.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] SEMI-SUPERVISED SPARSE DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Xiangrong
    Ning Huyan
    Thou, Nan
    An, Jinliang
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2830 - 2833
  • [42] Noisy multi-label semi-supervised dimensionality reduction
    Mikalsen, Karl Oyvind
    Soguero-Ruiz, Cristina
    Bianchi, Filippo Maria
    Jenssen, Robert
    PATTERN RECOGNITION, 2019, 90 : 257 - 270
  • [43] Semi-supervised dimensionality reduction using pairwise equivalence constraints
    Cevikalp, Hakan
    Verbeek, Jakob
    Jurie, Frederic
    Klaser, Alexander
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 489 - 496
  • [44] Semi-supervised local fisher discriminant analysis for dimensionality reduction
    Sugiyama, Masashi
    Ide, Tsuyoshi
    Nakajima, Shinichi
    Sese, Jun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 333 - +
  • [45] A unified semi-supervised dimensionality reduction framework for manifold learning
    Chatpatanasiri, Ratthachat
    Kijsirikul, Boonserm
    NEUROCOMPUTING, 2010, 73 (10-12) : 1631 - 1640
  • [46] Semi-supervised Dimensionality Reduction via Multimodal Matrix Factorization
    Beltran, Viviana
    Vanegas, Jorge A.
    Gonzalez, Fabio A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 676 - 682
  • [47] Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    Masashi Sugiyama
    Tsuyoshi Idé
    Shinichi Nakajima
    Jun Sese
    Machine Learning, 2010, 78 : 35 - 61
  • [48] Adaptive Local Embedding Learning for Semi-Supervised Dimensionality Reduction
    Nie, Feiping
    Wang, Zheng
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 4609 - 4621
  • [49] Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction
    Minghua Ma
    Tingquan Deng
    Ning Wang
    Yanmei Chen
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 397 - 411
  • [50] Discriminative Sparsity Preserving Projections for Semi-Supervised Dimensionality Reduction
    Gu, Nannan
    Fan, Mingyu
    Qiao, Hong
    Zhang, Bo
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (07) : 391 - 394