Dimensional reduction of large image datasets using non-linear principal components

被引:0
|
作者
Botelho, SSC
Lautenschlger, W
de Figueiredo, MB
Centeno, TM
Mata, MM
机构
[1] Fundacao Univ Fed Rio Grande, Dept Fis, FURG, BR-96201900 Rio Grande, RS, Brazil
[2] CEFET PR, CPGEI, BR-80203090 Curitiba, Parana, Brazil
关键词
neural network; image processing; cascaded-NLPCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we apply a Neural Network (NN) to reduce image dataset, distilling the massive datasets down to a new space of smaller dimension. Due to the possibility of these data have nonlinearities, traditional multivariate analysis, like the Principal Component Analysis (PCA), may not represent reality. Alternatively, Nonlinear Principal Component Analysis (NLPCA) can be performed by a NN model to fulfill that deficiency. However, when the dimension of the image increases, NN may easily saturate. This work presents an original methodology associated with the use of a set of cascaded multi-layer NN with a bottleneck structure to extract nonlinear information of the large set of image data. We illustrate its good performance with a set of tests against comparisons using this methodology and PCA in the treatment of oceanographic data associated with mesoscale variability of an oceanic boundary current.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 50 条
  • [41] Image Smoothing Using Non-Linear Filters A Comparative Study
    Mostaghim, Melika
    Ghodousi, Elnaz
    Tajeripoor, Farshad
    2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [42] Image Zooming using Non-linear Partial Differential Equation
    Nowrozian, N.
    Hassanpour, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2014, 27 (01): : 15 - 28
  • [43] Detection and quantification of non-linear structural behavior using principal component analysis
    Hot, A.
    Kerschen, G.
    Foltete, E.
    Cogan, S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 26 : 104 - 116
  • [44] Elimination of gridlines by using non-linear filter in mammographic image
    Maruyama, T.
    Yamamoto, H.
    IET IMAGE PROCESSING, 2011, 5 (05) : 457 - 465
  • [45] Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets
    Anja Apel
    Joel G. Fletcher
    Jeff L. Fidler
    David M. Hough
    Lifeng Yu
    Luis S. Guimaraes
    Matthias E. Bellemann
    Cynthia H. McCollough
    David R. Holmes
    Christian D. Eusemann
    European Radiology, 2011, 21 : 644 - 652
  • [46] Pilot multi-reader study demonstrating potential for dose reduction in dual energy hepatic CT using non-linear blending of mixed kV image datasets
    Apel, Anja
    Fletcher, Joel G.
    Fidler, Jeff L.
    Hough, David M.
    Yu, Lifeng
    Guimaraes, Luis S.
    Bellemann, Matthias E.
    McCollough, Cynthia H.
    Holmes, David R., III
    Eusemann, Christian D.
    EUROPEAN RADIOLOGY, 2011, 21 (03) : 644 - 652
  • [47] Incorporation of a Non-linear Image Filtering Technique for Noise Reduction in Seismic Data
    Jalal Ferahtia
    Kamel Baddari
    Nouredine Djarfour
    Abdel Kader Kassouri
    Pure and Applied Geophysics, 2010, 167 : 1389 - 1404
  • [48] Incorporation of a Non-linear Image Filtering Technique for Noise Reduction in Seismic Data
    Ferahtia, Jalal
    Baddari, Kamel
    Djarfour, Nouredine
    Kassouri, Abdel Kader
    PURE AND APPLIED GEOPHYSICS, 2010, 167 (11) : 1389 - 1404
  • [49] Non-linear principal component embedding for face recognition
    Abusham, Eimad Eldin Abdu Ali
    Kiong, Wong Eng
    Journal of Applied Sciences, 2009, 9 (14) : 2625 - 2629
  • [50] ON ALGEBRAIC STRUCTURES IN THE NON-LINEAR PRINCIPAL CHIRAL MODEL
    LU, JF
    GE, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (08): : L435 - L438