Electronic Structure Reconfiguration toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting

被引:336
|
作者
Liu, Hengjie [1 ]
He, Qun [1 ]
Jiang, Hongliang [1 ]
Lin, Yunxiang [1 ]
Zhang, Youkui [1 ,2 ]
Habib, Muhammad [1 ]
Chen, Shuangming [1 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
关键词
electronic structure; defect engineering; X-ray absorption spectroscopy; metallic characteristics; water splitting; OXYGEN-REDUCTION REACTION; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; GENERALIZED GRADIENT APPROXIMATION; HYDROGEN EVOLUTION CATHODE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ULTRATHIN NANOSHEETS; MOLYBDENUM-DISULFIDE; HIGHLY EFFICIENT; XPS;
D O I
10.1021/acsnano.7b06501
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing highly active and low-cost heterogeneous catalysts toward overall electrochemical water splitting is extremely desirable but still a challenge. Herein, we report pyrite NiS2 nanosheets doped with vanadium heteroatoms as bifunctional electrode materials for both hydrogen- and oxygen-evolution reaction (HER and OER). Notably, the electronic structure reconfiguration of pyrite NiS2 is observed from typical semiconductive characteristics to metallic characteristics by engineering vanadium (V) displacement defect, which is confirmed by both experimental temperature-dependent resistivity and theoretical density functional theory calculations. Furthermore, elaborate X-ray absorption spectroscopy measurements reveal that electronic structure reconfiguration of NiS2 is rooted in electron transfer from doped V to Ni sites, consequently enabling Ni sites to gain more electrons. The metallic V-doped NiS2 nanosheets exhibit extraordinary electrocatalytic performance with overpotentials of about 290 mV for OER and about 110 mV for HER at 10 mA cm(-2) with long-term stability in 1 M KOH solutions, representing one of the best non-noble-metal bifunctional electrocatalysts to date. This work provides insights into electronic structure engineering from well-designed atomic defect metal sulfide.
引用
收藏
页码:11574 / 11583
页数:10
相关论文
共 50 条
  • [21] Interface engineering of the MoS2/NiS2/CoS2 nanotube as a highly efficient bifunctional electrocatalyst for overall water splitting
    Yin, Zehao
    Liu, Xuan
    Chen, Siru
    Xie, Haijiao
    Gao, Liguo
    Liu, Anmin
    Ma, Tingli
    Li, Yanqiang
    MATERIALS TODAY NANO, 2022, 17
  • [22] Interface engineering of NiS/NiCo2S4 heterostructure with charge redistribution for boosting overall water splitting
    Wan, Zhenwei
    Zhang, Yueqi
    Ren, Qinglin
    Li, Xueru
    Yu, Haitao
    Zhou, Wenkai
    Ma, Xinbin
    Xuan, Cuijuan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 795 - 806
  • [23] Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting
    Juncheng Wu
    ZheFan Wang
    Taotao Guan
    Guoli Zhang
    Juan Zhang
    Jie Han
    Shengqin Guan
    Ning Wang
    Jianlong Wang
    Kaixi Li
    Carbon Energy, 2023, 5 (03) : 17 - 30
  • [24] Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting
    Wu, Juncheng
    Wang, Zhe-Fan
    Guan, Taotao
    Zhang, Guoli
    Zhang, Juan
    Han, Jie
    Guan, Shengqin
    Wang, Ning
    Wang, Jianlong
    Li, Kaixi
    CARBON ENERGY, 2023, 5 (03)
  • [25] Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting
    An, Li
    Feng, Jianrui
    Zhang, Yu
    Wang, Rui
    Liu, Hanwen
    Wang, Gui-Chang
    Cheng, Fangyi
    Xi, Pinxian
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
  • [26] Sulfur and oxygen dual vacancies manipulation on 2D NiS2/CeO2 hybrid heterostructure to boost overall water splitting activity
    Liao, W. Y.
    Li, W. D. Z.
    Zhang, Y.
    MATERIALS TODAY CHEMISTRY, 2022, 24
  • [27] Modulating ternary Mo-Ni-P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting
    Lai, Changgan
    Liu, Xianbin
    Wang, Ying
    Cao, Changqing
    Yin, Yanhong
    Yang, Hui
    Qi, Xiaopeng
    Zhong, Shengwen
    Hou, Xinmei
    Liang, Tongxiang
    ELECTROCHIMICA ACTA, 2020, 330
  • [28] Ru-doping modulated electronic structure of bimetallic phosphide toward efficient overall water splitting
    Zhao, Ming
    Zhang, Shan
    Hu, Yanqing
    Xing, Huanhuan
    Li, Chunmei
    Yuan, Weiyong
    Sun, Wei
    Guo, Chunxian
    Li, Chang Ming
    International Journal of Hydrogen Energy, 2024, 51 : 998 - 1009
  • [29] Ru-doping modulated electronic structure of bimetallic phosphide toward efficient overall water splitting
    Zhao, Ming
    Zhang, Shan
    Hu, Yanqing
    Xing, Huanhuan
    Li, Chunmei
    Yuan, Weiyong
    Sun, Wei
    Guo, Chunxian
    Li, Chang Ming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 998 - 1009
  • [30] Defect-Engineered Ultrathin δ-MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting
    Zhao, Yunxuan
    Chang, Chao
    Teng, Fei
    Zhao, Yufei
    Chen, Guangbo
    Shi, Run
    Waterhouse, Geoffrey I. N.
    Huang, Weifeng
    Zhang, Tierui
    ADVANCED ENERGY MATERIALS, 2017, 7 (18)