STIFS: Spatio-Temporal Input Frame Selection for Learning-based Video Super-Resolution Models

被引:0
|
作者
Baniya, Arbind Agrahari [1 ]
Lee, Tsz-Kwan [1 ]
Eklund, Peter W. [1 ]
Aryal, Sunil [1 ]
机构
[1] Deakin Univ, Sch IT, Geelong, Vic, Australia
关键词
High Definition Video; Image Analysis; Image Quality; Video Signal Processing; Super-resolution;
D O I
10.5220/0011339900003289
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning Video Super-Resolution (VSR) methods rely on learning spatio-temporal correlations between a target frame and its neighbouring frames in a given temporal radius to generate a high-resolution output. Among recent VSR models, a sliding window mechanism is popularly adopted by picking a fixed number of consecutive frames as neighbouring frames for a given target frame. This results in a single frame being used multiple times in the input space during the super-resolution process. Moreover, the approach of adopting the fixed consecutive frames directly does not allow deep learning models to learn the full extent of spatio-temporal inter-dependencies between a target frame and its neighbours along a video sequence. To mitigate these issues, this paper proposes a Spatio-Temporal Input Frame Selection (STIFS) algorithm based on image analysis to adaptively select the neighbouring frame(s) based on the spatio-temporal context dynamics with respect to the target frame. STIFS is first-ever dynamic selection mechanism proposed for VSR methods. It aims to enable VSR models to better learn spatio-temporal correlations in a given temporal radius and consequently maximise the quality of the high-definition output. The proposed STIFS algorithm achieved remarkable PSNR improvements in the high-resolution output for VSR models on benchmark datasets.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [41] Spatio-temporal Super-resolution with Photographic and Depth Data using GANs
    Lim, Steffen
    Khan, Sams
    Alessandro, Matteo
    McFall, Kevin
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 262 - 263
  • [42] Super-resolution onmidirectional camera images using spatio-temporal analysis
    Kawasaki, H
    Ikeuchi, K
    Sakauchi, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2006, 89 (06): : 47 - 59
  • [43] Real-Time Video Super-Resolution with Spatio-Temporal Modeling and Redundancy-Aware Inference
    Wang, Wenhao
    Liu, Zhenbing
    Lu, Haoxiang
    Lan, Rushi
    Zhang, Zhaoyuan
    SENSORS, 2023, 23 (18)
  • [44] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Aman Chadha
    John Britto
    M. Mani Roja
    Computational Visual Media, 2020, 6 : 307 - 317
  • [45] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Chadha, Aman
    Britto, John
    Roja, M. Mani
    COMPUTATIONAL VISUAL MEDIA, 2020, 6 (03) : 307 - 317
  • [46] Super-sampling by learning-based super-resolution
    Du, Ping
    Zhang, Jinhuan
    Long, Jun
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (02) : 249 - 257
  • [47] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Aman Chadha
    John Britto
    M.Mani Roja
    Computational Visual Media, 2020, 6 (03) : 307 - 317
  • [48] Content-aware frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging
    Martin Priessner
    David C. A. Gaboriau
    Arlo Sheridan
    Tchern Lenn
    Carlos Garzon-Coral
    Alexander R. Dunn
    Jonathan R. Chubb
    Aidan M. Tousley
    Robbie G. Majzner
    Uri Manor
    Ramon Vilar
    Romain F. Laine
    Nature Methods, 2024, 21 : 322 - 330
  • [49] Content-aware frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging
    Priessner, Martin
    Gaboriau, David C. A.
    Sheridan, Arlo
    Lenn, Tchern
    Garzon-Coral, Carlos
    Dunn, Alexander R.
    Chubb, Jonathan R.
    Tousley, Aidan M.
    Majzner, Robbie G.
    Manor, Uri
    Vilar, Ramon
    Laine, Romain F.
    NATURE METHODS, 2024, 21 (02) : 322 - 330
  • [50] VSRDiff: Learning Inter-Frame Temporal Coherence in Diffusion Model for Video Super-Resolution
    Liu, Linlin
    Niu, Lele
    Tang, Jun
    Ding, Yong
    IEEE ACCESS, 2025, 13 : 11447 - 11462