Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow with Thermal Radiation and Newtonian Heating

被引:82
|
作者
Makinde, Oluwole Daniel [1 ]
机构
[1] Cape Peninsula Univ Technol, Inst Adv Res Math Modelling & Computat, ZA-7535 Bellville, South Africa
来源
ENTROPY | 2011年 / 13卷 / 08期
基金
新加坡国家研究基金会;
关键词
flat plate; variable viscosity; Newtonian heating; Thermal radiation; magnetic field; entropy generation rate; MOVING VERTICAL PLATE; MIXED CONVECTION; POROUS-MEDIUM; SURFACE; TEMPERATURE; CHANNEL;
D O I
10.3390/e13081446
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present paper is concerned with the analysis of inherent irreversibility in hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal radiation and Newtonian heating. Using local similarity solution technique and shooting quadrature, the velocity and temperature profiles are obtained numerically and utilized to compute the entropy generation number. The effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable viscosity parameter, radiation parameter and local Biot number on the fluid velocity profiles, temperature profiles, local skin friction and local Nusselt number are presented. The influences of the same parameters and the dimensionless group parameter on the entropy generation rate in the flow regime and Bejan number are calculated, depicted graphically and discussed quantitatively. It is observed that the peak of entropy generation rate is attained within the boundary layer region and plate surface act as a strong source of entropy generation and heat transfer irreversibility.
引用
收藏
页码:1446 / 1464
页数:19
相关论文
共 50 条
  • [31] Effect of variable viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary condition
    Makinde, Oluwole Daniel
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (05) : 1615 - 1622
  • [32] Effect of Radiation and Magnetohydrodynamic Free Convection Boundary Layer Flow on a Solid Sphere with Newtonian Heating in a Micropolar Fluid
    Alkasasbeh, Hamzeh Taha
    Sarif, Norhafizah Md
    Salleh, Mohd Zuki
    Tahar, Razman Mat
    Nazar, Roslinda
    Pop, Ioan
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 662 - 669
  • [33] Mixed convection boundary layer flow about a solid sphere with Newtonian heating
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    ARCHIVES OF MECHANICS, 2010, 62 (04): : 283 - 303
  • [34] Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation
    Shehzad, S. A.
    Hussain, Tariq
    Hayat, T.
    Ramzan, M.
    Alsaedi, A.
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2015, 22 (01) : 360 - 367
  • [35] Modeling of Free Convection Boundary Layer Flow on a Solid Sphere with Newtonian Heating
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (03) : 263 - 274
  • [36] Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2010, 41 (06) : 651 - 655
  • [37] Variable Viscosity Effect on Boundary Layer Flow Along Continuously Moving Plate with the Thermal Boundary Condition of the Third Kind
    Basant K. Jha
    Gabriel Samaila
    International Journal of Applied and Computational Mathematics, 2021, 7 (3)
  • [38] Modeling of Free Convection Boundary Layer Flow on a Solid Sphere with Newtonian Heating
    M. Z. Salleh
    R. Nazar
    I. Pop
    Acta Applicandae Mathematicae, 2010, 112 : 263 - 274
  • [39] Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation
    S.A.Shehzad
    Tariq Hussain
    T.Hayat
    M.Ramzan
    A.Alsaedi
    Journal of Central South University, 2015, 22 (01) : 360 - 367
  • [40] FORCED CONVECTION BOUNDARY LAYER FLOW AT A FORWARD STAGNATION POINT WITH NEWTONIAN HEATING
    Salleh, M. Z.
    Nazar, R.
    Pop, I.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2009, 196 (09) : 987 - 996