Matrix Algebras in Non-Hermitian Quantum Mechanics

被引:7
|
作者
Sergi, Alessandro [1 ]
机构
[1] Univ KwaZulu Natal, Sch Phys, ZA-3209 Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
non-hermitian quantum mechanics; non-Hamiltonian dynamics; open quantum systems; SYMMETRY; SYSTEMS;
D O I
10.1088/0253-6102/56/1/18
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schrodinger's picture of quantum dynamics. Here it is shown in both cases how to map the algebra of commutators, defining the time evolution in terms of a non-Hermitian Hamiltonian, onto a non-Hamiltonian algebra with a Hermitian Hamiltonian. The logic behind such a derivation is reversible, so that any Hermitian Hamiltonian can be used in the formulation of non-Hermitian dynamics through a suitable algebra of generalized (non-Hamiltonian) commutators. These results provide a general structure (a template) for non-Hermitian equations of motion to be used in the computer simulation of open quantum systems dynamics.
引用
收藏
页码:96 / 98
页数:3
相关论文
共 50 条
  • [21] Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics
    Ju, Chia-Yi
    Miranowicz, Adam
    Chen, Yueh-Nan
    Chen, Guang-Yin
    Nori, Franco
    QUANTUM, 2024, 8 : 1 - 20
  • [22] Gaussian eigenstate pinning in non-Hermitian quantum mechanics
    Zeng, Qi-Bo
    Lu, Rong
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [24] Non-Hermitian quantum mechanics in the context of the Lindblad equation
    Selsto, Solve
    XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388
  • [25] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    J. da Providência
    N. Bebiano
    J. P. da Providência
    Brazilian Journal of Physics, 2011, 41 : 78 - 85
  • [26] Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty
    Jana, T. K.
    Roy, P.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [27] On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics
    Novikov, R. G.
    Taimanov, I. A.
    ANNALES HENRI POINCARE, 2024, 25 (08): : 3899 - 3909
  • [28] Non-Hermitian quantum mechanics and localization in physical systems
    Hatano, N
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 319 - 322
  • [29] Entanglement and Purification Transitions in Non-Hermitian Quantum Mechanics
    Gopalakrishnan, Sarang
    Gullans, Michael J.
    PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [30] Linking Scalar Elastodynamics and Non-Hermitian Quantum Mechanics
    Shmuel, Gal
    Moiseyev, Nimrod
    PHYSICAL REVIEW APPLIED, 2020, 13 (02):