Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: Built-in electric field dominated radical and non-radical process

被引:136
|
作者
Dong, Zheng-Tao [1 ]
Niu, Cheng-Gang [1 ]
Guo, Hai [1 ]
Niu, Huai-Yuan [2 ]
Liang, Song [1 ]
Liang, Chao [1 ]
Liu, Hui-Yun [1 ]
Yang, Ya-Ya [1 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
关键词
Peroxymonosulfate; Metallic oxides-carbon catalyst; Radical and non-radical; Electron transfer; Built-in electric field; POROUS CARBON; ORGANIC POLLUTANTS; DEGRADATION; REMOVAL; CO; PERFORMANCE; PERSULFATE; LEVOFLOXACIN; CATALYSTS; BEHAVIOR;
D O I
10.1016/j.cej.2021.130850
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Radical and non-radical dominated PMS activation has been widely researched, but the driving force of this process is not well understood. Herein, CuFe2O4 nanoparticles anchored on nitrogen-doped carbon nanosheets (CFONC-2) was prepared for investigation. Experimental results and DFT calculations indicate that a built-in electric field (BIEF) is formed between CuFe2O4 and N-doped carbon nanosheets, which is proposed as the driving force to adjust the electron transfer for triggering radical and non-radical pathway. Specifically, Cu+/ Cu2+ and Fe2+/Fe3+ redox cycles are regarded to be the dominant catalytic sites for radical generation (SO4 center dot-, HO center dot and center dot O2-). Whereas graphitic N, sp2-hybridized structure, as well as C = O functional group are main active sites for non-radical production (1O2 and direct electron transfer process). Under the radical and non-radical processes dominated by BIEF, the CFONC-2/PMS system exhibits excellent removal performance of levofloxacin (LVFX), where 84.87% of LVFX is removed in 90 min. This work offers a feasible strategy for designing metallic oxides-carbon catalyst with strong electric field effect to satisfy the charge transfer in PMS catalytic reaction.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Heterogeneous activation of peroxymonosulfate by sulfur-doped FexMn3-xO4 (x=1, 2) for trichloroethylene degradation: Non-radical and radical mechanisms
    Feng, Meiyun
    Xu, Zhiqiang
    Lin, Kuangfei
    Xie, Haijiao
    Zhang, Meng
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [22] Enhanced non-radical activation of peroxymonosulfate by g-C3N4 modulated N-doped biochar: The role of extrinsic defects and oxygen-containing functional groups
    Deng, Min
    Shi, Yintao
    Li, Meng
    Zhang, Hao
    Deng, Huiyuan
    Xia, Dongsheng
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 70
  • [23] Catalytic activation of peroxymonosulfate by Mn/N co-doped porous carbon for effective phenol degradation: crucial role of non-radical pathways
    Guo, Qi
    Xu, Jihong
    Tang, Rui
    Min, Yulin
    Hu, Zhenhu
    Shi, Penghui
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (11) : 5420 - 5430
  • [24] Reduced graphene oxide supported CoFe2O4 composites with enhanced peroxymonosulfate activation for the removal of sulfamethoxazole: Collaboration of radical and non-radical pathways
    Ahmed, Adeel
    Usman, Muhammad
    Ji, Zhijian
    Rafiq, Muhammad
    Ullah, Raza
    Yu, Bing
    Shen, Youqing
    Cong, Hailin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [25] Non-radical dominated degradation of chloroquine phosphate via Fe-based O-doped polymeric carbon nitride activated peroxymonosulfate: Performance and mechanism
    Lin, Zifeng
    Chen, Ping
    Lv, Wenying
    Fang, Zheng
    Xiao, Zhenjun
    Luo, Jin
    Zhang, Junlong
    Liu, Yang
    Liu, Guoguang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 319
  • [26] Hollow N-doped carbon @ O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor
    Zhao, Tingting
    Liu, Cong
    Yi, Fenyun
    Deng, Wenyue
    Gao, Aimei
    Shu, Dong
    Zheng, Lihong
    ELECTROCHIMICA ACTA, 2020, 364
  • [27] Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation
    Qin, Qingdong
    Liu, Ting
    Zhang, Jiaxuan
    Wei, Rui
    You, Shijie
    Xu, Yan
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 419
  • [28] Magnetic Fe3O4-N-doped carbon sphere composite for tetracycline degradation by enhancing catalytic activity for peroxymonosulfate: A dominant non-radical mechanism
    Yang, Hanwen
    Zhou, Jie
    Yang, Enxiang
    Li, Huanxuan
    Wu, Shengji
    Yang, Wei
    Wang, Hui
    CHEMOSPHERE, 2021, 263
  • [29] Visible-light enhanced peroxymonosulfate activation on Co3O4/MnO2 for the degradation of tetracycline: Cooperation of radical and non-radical mechanisms
    Wang, Yingjun
    Qiu, Longyu
    Bao, Shuangyou
    Tian, Fenyang
    Sheng, Jie
    Yang, Weiwei
    Yu, Yongsheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316
  • [30] NiFe2O4/N-CNT mediated peroxydisulfate activation via radical and non-radical pathways for water purification
    Ma, Hongchao
    Wang, Xinyue
    Qiao, Min
    Liu, Zixuan
    Hossain, Md Azharul
    Fu, Yinghuan
    Wang, Guowen
    Wang, Pengyuan
    Shao, Guolin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):