Forecasting Australia's real house price index: A comparison of time series and machine learning methods

被引:34
|
作者
Milunovich, George [1 ]
机构
[1] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
australian real house price index; autoregression; forecasting; machine learning; neural networks; time series; NONLINEAR MODELS; LOSS AVERSION; TESTS; RETURNS; PERFORMANCE; REGRESSION; SELECTION; ACCURACY; MARKET;
D O I
10.1002/for.2678
中图分类号
F [经济];
学科分类号
02 ;
摘要
We employ 47 different algorithms to forecast Australian log real house prices and growth rates, and compare their ability to produce accurate out-of-sample predictions. The algorithms, which are specified in both single- and multi-equation frameworks, consist of traditional time series models, machine learning (ML) procedures, and deep learning neural networks. A method is adopted to compute iterated multistep forecasts from nonlinear ML specifications. While the rankings of forecast accuracy depend on the length of the forecast horizon, as well as on the choice of the dependent variable (log price or growth rate), a few generalizations can be made. For one- and two-quarter-ahead forecasts we find a large number of algorithms that outperform the random walk with drift benchmark. We also report several such outperformances at longer horizons of four and eight quarters, although these are not statistically significant at any conventional level. Six of the eight top forecasts (4 horizons x 2 dependent variables) are generated by the same algorithm, namely a linear support vector regressor (SVR). The other two highest ranked forecasts are produced as simple mean forecast combinations. Linear autoregressive moving average and vector autoregression models produce accurate olne-quarter-ahead predictions, while forecasts generated by deep learning nets rank well across medium and long forecast horizons.
引用
收藏
页码:1098 / 1118
页数:21
相关论文
共 50 条
  • [41] Time Series Forecasting of Price of Agricultural Products Using Hybrid Methods
    Purohit, Sourav Kumar
    Panigrahi, Sibarama
    Sethy, Prabira Kumar
    Behera, Santi Kumari
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (15) : 1388 - 1406
  • [42] Forecasting daily natural gas consumption with regression, time series and machine learning based methods
    Yucesan, Melih
    Pekel, Engin
    Celik, Erkan
    Gul, Muhammet
    Serin, Faruk
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 4605 - 4620
  • [43] An application for forecasting the number of applications to the emergency department with time series analysis and machine learning methods
    Ciftci, Sema
    Batur Sir, Gul Didem
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2023, 29 (07): : 667 - 679
  • [44] Forecasting daily natural gas consumption with regression, time series and machine learning based methods
    Yucesan, Melih
    Pekel, Engin
    Celik, Erkan
    Gul, Muhammet
    Serin, Faruk
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 4605 - 4620
  • [45] A case study comparing machine learning with statistical methods for time series forecasting: size matters
    Cerqueira, Vitor
    Torgo, Luis
    Soares, Carlos
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 59 (02) : 415 - 433
  • [46] A case study comparing machine learning with statistical methods for time series forecasting: size matters
    Vitor Cerqueira
    Luis Torgo
    Carlos Soares
    Journal of Intelligent Information Systems, 2022, 59 : 415 - 433
  • [47] Forecasting time series combining machine learning and Box-Jenkins time series
    Montañés, E
    Quevedo, JR
    Prieto, MM
    Menéndez, CO
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2002, PROCEEDINGS, 2002, 2527 : 491 - 499
  • [48] Performance Comparison of Advanced Machine Learning Techniques for Electricity Price Forecasting
    Jana, Aryyama Kumar
    Paul, Rudrendu Kumar
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [49] A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA
    Ulke, Volkan
    Sahin, Afsin
    Subasi, Abdulhamit
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (05): : 1519 - 1527
  • [50] A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA
    Volkan Ülke
    Afsin Sahin
    Abdulhamit Subasi
    Neural Computing and Applications, 2018, 30 : 1519 - 1527