Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) with air: mechanisms, pathways and synthesis selectivity

被引:59
|
作者
Cajnko, Misa Mojca [1 ]
Novak, Uros [1 ]
Grilc, Miha [1 ]
Likozar, Blaz [1 ]
机构
[1] Natl Inst Chem, Dept Catalysis & Chem React Engn, Hajdrihova 19, Ljubljana 1000, Slovenia
关键词
5-(Hydroxymethyl)furfural (HMF); Biomass-derived furan-2; 5-Dicarboxylic acid (FDCA); Alcohol or galactose oxidase enzymes; Enzymatic reaction engineering; Air; CATALYZED OXIDATION; OXIDASE; BIOTRANSFORMATION; CHEMICALS; AU;
D O I
10.1186/s13068-020-01705-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background 2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied. Results Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a K-m value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h. Conclusions Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Paired Electrolysis of Acrylonitrile and 5-Hydroxymethylfurfural for Simultaneous Generation of Adiponitrile and 2,5-Furandicarboxylic Acid
    Qi, Ji
    An, Ziying
    Chen, Xiao
    Li, Chuang
    Du, Yan
    Zhang, Xiuhong
    Liang, Changhai
    CATALYSTS, 2022, 12 (07)
  • [42] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    CHEMCATCHEM, 2024, 16 (12)
  • [43] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617
  • [44] Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2,5-diformylfuran using deep eutectic solvents
    Qin, Ye-Zhi
    Li, Yan-Mei
    Zong, Min-Hua
    Wu, Hong
    Li, Ning
    GREEN CHEMISTRY, 2015, 17 (07) : 3718 - 3722
  • [45] Advancements in biomass conversion: Copper-catalyzed anaerobic dehydrogenation of 5-hydroxymethylfurfural to 2,5-diformylfuran
    Gao, Xuan
    Li, Zhihui
    Zhang, Shuxing
    Zhang, Dongsheng
    Zhao, Xinqiang
    Zhang, Baoquan
    Wang, Yanji
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [46] Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Heterogeneous Catalysts
    Ma, Zhiming
    Wang, Lei
    Li, Guangyu
    Song, Tao
    CATALYSTS, 2024, 14 (02)
  • [47] Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Kong, Fanhao
    Zhang, Zhe
    Yang, Lan
    Wang, Min
    DALTON TRANSACTIONS, 2021, 50 (31) : 10922 - 10927
  • [48] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, 60 : 950 - 957
  • [49] Catalytic Synthesis of 2,5-Furandicarboxylic Acid from Concentrated 2,5-Diformylfuran Mediated by N-hydroxyimides under Mild Conditions
    Xia, Fei
    Ma, Jiping
    Jia, Xiuquan
    Guo, Meiling
    Liu, Xuebin
    Ma, Hong
    Gao, Jin
    Xu, Jie
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (19) : 3329 - 3334
  • [50] Research progress on the synthesis of bio-based aromatic platform chemical 2,5-furandicarboxylic acid
    Wang, Jinggang
    Liu, Xiaoqing
    Zhu, Jin
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2017, 36 (02): : 672 - 682