Reducing Sugar Production from Teff Straw Biomass Using Dilute Sulfuric Acid Hydrolysis: Characterization and Optimization Using Response Surface Methodology

被引:14
|
作者
Tesfaw, Andinet Alemayehu [1 ]
Tizazu, Belachew Zegale [1 ]
机构
[1] Addis Ababa Sci & Technol Univ, Dept Chem Engn, Addis Ababa, Ethiopia
关键词
LIGNOCELLULOSIC BIOMASS; PRETREATMENT;
D O I
10.1155/2021/2857764
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The present study evaluated first the characterization of Teff straw and then Box-Behnken design (BBD), and response surface methodology was adopted to optimize the parameters (hydrolysis temperature, dilute sulfuric acid concentration, solid to liquid ratio, and hydrolysis time) of dilute sulfuric acid hydrolysis of Teff straw in order to get a maximum yield of total reducing sugar (TRS). The chemical analysis of Teff straw revealed high amounts of cellulose (41.8 wt%), hemicellulose (38 wt%), and lignin (17 wt%). The morphological analysis using SEM showed that hydrolyzed Teff straw with dilute sulfuric acid has more pores and distorted bundles than those of raw Teff straw. XRD analysis also indicated that hydrolyzed Teff straw has higher crystallinity index and smaller crystallite size than raw Teff straw, which might be due to removal of hemicellulose, amorphous cellulose, and lignin components. Under the optimized conditions for dilute sulfuric acid hydrolysis of Teff straw (120 degrees C, 4% v/v H2SO4 concentration, 1 : 20 solid to liquid ratio, and 55 min hydrolysis time), we have found a total reducing sugar yield of 26.65 mg/g. The results of validation experiment under the optimum conditions agreed well with model predictions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Enhancing sugar yield for bioconversion of rice straw: Optimization of Microwave-assisted Pretreatment using dilute acid hydrolysis
    Shangdiar, Sumarlin
    Cheng, Pei-Cheng
    Chen, Shang-Cyuan
    Amesho, Kassian T. T.
    Ponnusamy, Vinoth Kumar
    Lin, Yuan-Chung
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2023, 32
  • [32] DILUTE ACID PRETREATMENT OF WHEAT STRAW: A PREDICTIVE MODEL FOR ENERGY CONSUMPTION USING RESPONSE SURFACE METHODOLOGY
    Song, Xiaoxu
    Zhang, Meng
    Pei, Z. J.
    Nottingham, A. J.
    Zhang, P. F.
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2013, VOL 2, 2013,
  • [33] Optimization of Reducing Sugar Concentration from Ulva fasciata Using Cellulase via Response Surface Methodology Techniques
    Ami, Johannes
    Mensah, Moses
    Asiedu, Nana Yaw
    Thygesen, Anders
    INDUSTRIAL BIOTECHNOLOGY, 2023, 19 (01) : 23 - 32
  • [34] Optimization of Hydrolysis Conditions for the Production of Antioxidant Peptides from Fish Gelatin Using Response Surface Methodology
    You, Lijun
    Regenstein, Joe M.
    Liu, Rui Hai
    JOURNAL OF FOOD SCIENCE, 2010, 75 (06) : C582 - C587
  • [35] Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology
    Korkmaz, Koray
    Tokur, Bahar
    FOOD BIOSCIENCE, 2022, 45
  • [36] Optimization of Enzymatic Hydrolysis for the Production of Antioxidative Peptide from Nannochloropsis gaditana using Response Surface Methodology
    Saleh, Nur Izzati Md
    Ghani, Wan Azlina Wan Ab Karim
    Harun, Mohd Razif
    Kamal, Siti Mazlina Mustapa
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2019, 27 : 41 - 55
  • [37] Optimization of enzymatic hydrolysis of wool fibers for nanoparticles production using response surface methodology
    Eslahi, Niloofar
    Dadashian, Fatemeh
    Nejad, Nahid Hemmati
    ADVANCED POWDER TECHNOLOGY, 2013, 24 (01) : 416 - 426
  • [38] Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology
    Canettieri, Eliana Vieira
    de Moraes Rocha, George Jackson
    de Carvalho, Joao Andrade, Jr.
    de Almeida e Silva, Joao Batista
    BIORESOURCE TECHNOLOGY, 2007, 98 (02) : 422 - 428
  • [39] Optimization of biodiesel production from wet microalgal biomass by direct transesterification using the surface response methodology
    Macias-Sanchez, M. D.
    Robles-Medina, A.
    Jimenez-Callejon, M. J.
    Hita-Pena, E.
    Esteban-Cerdan, L.
    Gonzalez-Moreno, P. A.
    Navarro-Lopez, E.
    Molina-Grima, E.
    RENEWABLE ENERGY, 2018, 129 : 141 - 149
  • [40] Optimization of the medicinal mushroom Ganoderma australe biomass production using Response Surface Methodology
    Papaspyridi, L. M.
    Katapodis, P.
    Gonou-Zagou, Z.
    Kapsanaki-Gotsi, E.
    Christakopoulos, P.
    PLANTA MEDICA, 2009, 75 (09) : 946 - 946