A generalized Fourier transform

被引:0
|
作者
Watanabe, S [1 ]
机构
[1] Aichi Inst Technol, Dept Elect & Informat Engn, Nishihazama, Gamagouri 4430047, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D-cj,D- j be the operator in L-2(R-N): D-cj,D- j = partial derivative/partial derivativex(j) - c(j)/x(j) R-j, R(j)u(x(1),..., x(j-1), x(j), x(j+1),..., x(N)) = u(x(1),..., x(j-1), -x(j), x(j+1),..., x(N)), where c(j) > -1/2 and j = 1, 2,..., N. We construct a generalized Fourier transform B-c1...cj...cN, which converts the operator D-cj,D- j into the multiplication operator i y(j), i.e., B-c1...cj...cN D-cj, j B-c1...cj...cN(*) = i y(j). Here B-c1...cj...cN(*) is the adjoint operator of B-c1...cj...cN and i = root-1. When c(1) = c(2) = ... = c(N) = 0, the operator D-cj,D-j becomes partial derivative/partial derivativex(j). Hence the transform B-c1...cj...cN coincides with the Fourier transform. We can therefore regard the transform B-c1...cj..cN as a generalized Fourier transform. On the basis of the transform we explicitly find out the solutions of the Cauchy problems for the heat equation with a strongly singular coefficient and for the Schrodinger equation with a strongly singular potential. Moreover, we show that there is the Friedrichs extension of -Delta+ k/(\x\(2)), x is an element of R-N as long as k > -N/4. Using the transform above we define spaces of Sobolev type. Each space is a generalized Sobolev space. We show an embedding theorem for these spaces. We see that the embedding theorem is a generalization of the Sobolev embedding theorem. We finally apply the embedding theorem to the Cauchy problem for the wave equation with a strongly singular coefficient and study some properties of its solution.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [41] Generalized sampling expansions associated with quaternion Fourier transform
    Cheng, Dong
    Kou, Kit Ian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) : 4021 - 4032
  • [42] Fast Implementation of Generalized Radon-Fourier Transform
    Ma, Ben
    Zhang, Shunsheng
    Jia, Wenkai
    Wang, Wen-Qin
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (06) : 3758 - 3767
  • [43] ON FOURIER-LAPLACE TRANSFORM OF A CLASS OF GENERALIZED FUNCTIONS
    Musin, I. Kh
    UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 78 - 89
  • [44] Generalized Discrete Fourier Transform: Theory and Design Methods
    Akansu, Ali N.
    Agirman-Tosun, Handan
    2009 IEEE SARNOFF SYMPOSIUM, CONFERENCE PROCEEDINGS, 2009, : 551 - 557
  • [45] A Fourier generalized convolution transform and applications to integral equations
    Nguyen Xuan Thao
    Vu Kim Tuan
    Nguyen Thanh Hong
    Fractional Calculus and Applied Analysis, 2012, 15 : 493 - 508
  • [46] Applications of the generalized Fourier transform in numerical linear algebra
    Åhlander, K
    Munthe-Kaas, H
    BIT NUMERICAL MATHEMATICS, 2005, 45 (04) : 819 - 850
  • [47] Generalized fourier transform for the Camassa-Holm hierarchy
    Constantin, Adrian
    Gerdjikov, Vladimir S.
    Ivanov, Rossen I.
    INVERSE PROBLEMS, 2007, 23 (04) : 1565 - 1597
  • [48] The Watson Fourier transform on a certain class of generalized functions
    Loualid, El Mehdi
    Berkak, Imane
    Daher, Radouan
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1425 - 1440
  • [49] A periodicity-induced generalized Fourier transform pair
    Capolino, F
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (08) : 1167 - 1169
  • [50] The Watson Fourier transform on a certain class of generalized functions
    El Mehdi Loualid
    Imane Berkak
    Radouan Daher
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1425 - 1440