机构:
Tel Aviv Univ, Sackler Fac Exact Sci, Sch Mat Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sackler Fac Exact Sci, Sch Mat Sci, IL-69978 Tel Aviv, Israel
Leviatan, D
[1
]
Shevchuk, IA
论文数: 0引用数: 0
h-index: 0
机构:Tel Aviv Univ, Sackler Fac Exact Sci, Sch Mat Sci, IL-69978 Tel Aviv, Israel
Shevchuk, IA
机构:
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Mat Sci, IL-69978 Tel Aviv, Israel
We discuss the degree of approximation by polynomials of a function f that is piecewise monotone in [ - 1, 1]. We would like to approximate f by polynomials which are comonotone with it. We show that by relaxing the requirement for comonotonicity in small neighborhoods of the points where changes in monotonicity occur and near the endpoints, we can achieve a higher degree of approximation. We show here that in that case the polynomials can achieve the rate of omega(3). On the other hand, we show in another paper, that no relaxing of the monotonicity requirements on sets of measures approaching 0 allows omega(4) estimates. (C) 1998 Academic Press.
机构:
Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, CanadaTel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
Kopotun, K. A.
Leviatan, D.
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
Leviatan, D.
Prymak, A. V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaTel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia