Using conic correspondences in two images to estimate the epipolar geometry

被引:25
|
作者
Kahl, F [1 ]
Heyden, A [1 ]
机构
[1] Univ Lund, Dept Math, S-22100 Lund, Sweden
关键词
D O I
10.1109/ICCV.1998.710803
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper it is shown hour corresponding conics in two images can be used to estimate the epipolar geometry in terms of the fundamental/essential matrix The corresponding conics can be images of either planar conics or silhouettes of quadrics. It is shown that one conic correspondence gives two independent constraints on the fundamental matrix: and a method to estimate the fundamental matrix: from at least four corresponding conics is presented. Further more, a new type of fundamental matrix for describing conic correspondences is introduced. Finally, it is shown that the problem of estimating the fundamental matrix from 5 point correspondences and 1 conic correspondence in general has 10 different solutions. A method to calculate these solutions is also given together With an experimental validation.
引用
收藏
页码:761 / 766
页数:6
相关论文
共 50 条
  • [41] Geometry of single axis motions using conic fitting
    Jiang, G
    Tsui, HT
    Quan, L
    Zisserman, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1343 - 1348
  • [42] TRAFFIC LIGHT DETECTION USING CONIC SECTION GEOMETRY
    Hosseinyalmdary, S.
    Yilmaz, Alper
    XXIII ISPRS CONGRESS, COMMISSION I, 2016, 3 (01): : 191 - 200
  • [43] A Dynamic Geometry Reconstruction Technique for Mobile Devices Using Adaptive Checkerboard Recognition and Epipolar Geometry
    Dao, Vinh Ninh
    Sugimoto, Masanori
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02) : 336 - 348
  • [44] Improving Accuracy for Ego Vehicle Motion Estimation using Epipolar Geometry
    Nedevschi, Sergiu
    Golban, Catalin
    Mitran, Cosmin
    2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), 2009, : 596 - +
  • [45] 3D Surface Reconstruction of a Patient Using Epipolar Geometry
    Kotoku, J.
    Nakabayashi, S.
    Haga, A.
    Kumagai, S.
    Ishibashi, T.
    Arai, N.
    Saotome, N.
    Kobayashi, T.
    MEDICAL PHYSICS, 2014, 41 (06) : 185 - 185
  • [46] Robust method of recovering epipolar geometry using messy genetic algorithm
    Hu, MX
    Yuan, BZ
    Dodds, G
    Tang, XF
    1ST CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS, 2004, : 164 - 171
  • [47] Topological Labelling of Scene using Background/Foreground Separation and Epipolar Geometry
    Hiraoka, Hiroki
    Imiya, Atsushi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 652 - 660
  • [48] Feature Tracking Using Epipolar Geometry for Ego-Motion Estimation
    Huang, Ting-Hsiang
    Zhuang, Zhen-Qi
    Chen, Chia-Yen
    Chang, Bao Rong
    Kuo, Chia-Chen
    2015 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2015,
  • [49] Alignment of Cubic-Panorama Image Datasets using Epipolar Geometry
    Salehi, Saeed
    Dubois, Eric
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1545 - 1548
  • [50] Self-calibration of a stereo rig using monocular epipolar geometry
    Dornaika, F
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 467 - 472