Local and omnibus goodness-of-fit tests in classical measurement error models

被引:17
|
作者
Ma, Yanyuan [1 ]
Hart, Jeffrey D. [1 ]
Janicki, Ryan [2 ]
Carroll, Raymond J. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77845 USA
[2] US Census Bur, Suitland, MD 20746 USA
基金
美国国家科学基金会;
关键词
Efficient estimation; Efficient testing; Errors in variables; Goodness-of-fit tests; Local alternatives; Measurement error; Score testing; Semiparametric models; EFFICIENT SEMIPARAMETRIC ESTIMATORS; FUNCTIONAL-MEASUREMENT ERROR;
D O I
10.1111/j.1467-9868.2010.00751.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
引用
收藏
页码:81 / 98
页数:18
相关论文
共 50 条
  • [31] Goodness-of-fit tests for semiparametric biased sampling models
    Gilbert, PB
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 118 (1-2) : 51 - 81
  • [32] Goodness-of-fit tests for parametric models in censored regression
    Pardo-Fernandez, Juan Carlos
    Van Keilegom, Ingrid
    Gonzalez-Manteiga, Wenceslao
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (02): : 249 - 264
  • [33] New goodness-of-fit tests for the error distribution of autoregressive time-series models
    Swanepoel, CJ
    Doku, WO
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 43 (03) : 333 - 340
  • [34] Multinomial goodness-of-fit tests for logistic regression models
    Fagerland, Morten W.
    Hosmer, David W.
    Bofin, Anna M.
    STATISTICS IN MEDICINE, 2008, 27 (21) : 4238 - 4253
  • [35] ON DISPARITY BASED GOODNESS-OF-FIT TESTS FOR MULTINOMIAL MODELS
    BASU, A
    SARKAR, S
    STATISTICS & PROBABILITY LETTERS, 1994, 19 (04) : 307 - 312
  • [36] The risk function of the goodness-of-fit tests for tail models
    Ingo Hoffmann
    Christoph J. Börner
    Statistical Papers, 2021, 62 : 1853 - 1869
  • [37] Goodness-of-fit tests in semi-linear models
    Meintanis, Simos G.
    Einbeck, Jochen
    STATISTICS AND COMPUTING, 2012, 22 (04) : 967 - 979
  • [38] Goodness-of-fit tests of normality for the innovations in ARMA models
    Ducharme, GR
    Micheaux, PL
    JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (03) : 373 - 395
  • [39] An updated review of Goodness-of-Fit tests for regression models
    Gonzalez-Manteiga, Wenceslao
    Crujeiras, Rosa M.
    TEST, 2013, 22 (03) : 361 - 411
  • [40] Tuning goodness-of-fit tests
    Arrasmith, A.
    Follin, B.
    Anderes, E.
    Knox, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1889 - 1898