Uncertainty principles of Heisenberg type for the Bargmann transform

被引:3
|
作者
Soltani, Fethi [1 ,2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Lab Anal Math & Applicat LR11ES11, Tunis 2092, Tunisia
[2] Univ Carthage, Ecole Natl Ingenieurs Carthage, Tunis 2035, Tunisia
关键词
Weighted Bergman space; Bargmann transform; Uncertainty inequalities; BERGMAN; OPERATORS; SPACES;
D O I
10.1007/s13370-021-00924-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce a family of weighted Bergman spaces {A(alpha,n)}(n is an element of N). This family satisfies the continuous inclusions A(alpha,n) subset of ... subset of A(alpha,2) subset of A(alpha,1) subset of A(alpha,0) = A(alpha), where A(alpha) is the classical weighted Bergman space. Next, we define and study the derivative operator del = d/dz and its adjoint operator L-alpha = z(2) d/dz + (alpha + 2)z on the weighted Bergman space A(alpha), and we establish an uncertainty inequality of Heisenberg-type for this space. A more general uncertainty inequality for the space A(alpha,n) is also given when we considered the operators del(n) = del(n) and L-alpha,L-n := (L-alpha)(n). Afterward, we give Heisenberg-type and Laeng-Morpurgo-type uncertainty inequalities for the Bargmann transform B-alpha, which is an isometric isomorphism between the space A(alpha) and the Lebesgue space L-2(R+,d mu(alpha)), where d mu(alpha) is an appropriate measure.
引用
收藏
页码:1629 / 1643
页数:15
相关论文
共 50 条
  • [21] Hardy type uncertainty principles for fractional Hankel transform
    Kanailal Mahato
    Prashant Singh
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [22] Time-Frequency Concentration, Heisenberg Type Uncertainty Principles and Localization Operators for the Continuous Dunkl Wavelet Transform on Rd
    Mejjaoli, Hatem
    Trimeche, Khalifa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (04)
  • [23] THE HEISENBERG-WEYL GROUP IN THE COHERENT STATE BASIS AND THE BARGMANN TRANSFORM
    BASU, D
    KAR, TK
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (08) : 1854 - 1859
  • [24] HEISENBERG UNCERTAINTY INEQUALITY FOR GABOR TRANSFORM
    Bansal, Ashish
    Kumar, Ajay
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 737 - 749
  • [25] THE μ-DEFORMED SEGAL-BARGMANN TRANSFORM IS A HALL TYPE TRANSFORM
    Bruce Sontz, Stephen
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (02) : 269 - 289
  • [26] Study of twisted Bargmann transform via Bargmann transform
    Bais, Shubham R.
    Naidu, Venku D.
    FORUM MATHEMATICUM, 2021, 33 (06) : 1659 - 1670
  • [27] Tighter Heisenberg–Weyl type uncertainty principle associated with quaternion wavelet transform
    Xinyu Wang
    Shenzhou Zheng
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [28] The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2009, 89 (03) : 339 - 343
  • [29] Uncertainty principles for the Cherednik transform
    Daher, R.
    Hamad, S. L.
    Kawazoe, T.
    Shimeno, N.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03): : 429 - 436
  • [30] Uncertainty Inequality for Radon Transform on the Heisenberg Group
    Xiao, Jinsen
    He, Jianxun
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (07) : 1603 - 1612