Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China

被引:11
|
作者
Wang, Chao [1 ,2 ]
Zhang, Zhengjia [1 ,2 ,3 ]
Paloscia, Simonetta [4 ]
Zhang, Hong [1 ]
Wu, Fan [1 ]
Wu, Qingbai [5 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Univ Geosci, Facaulty Informat Engn, Wuhan 430074, Hubei, Peoples R China
[4] CNR IFAC, Inst Appl Phys, Natl Res Council, I-50019 Florence, Italy
[5] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Gansu, Peoples R China
来源
REMOTE SENSING | 2018年 / 10卷 / 10期
基金
中国国家自然科学基金;
关键词
permafrost; soil moisture; SAR; multi-mode; Tibet; SYNTHETIC-APERTURE RADAR; SURFACE-ROUGHNESS; SAR DATA; L-BAND; EMPIRICAL-MODEL; PLATEAU; ASAR; RETRIEVAL; IMAGES; SERIES;
D O I
10.3390/rs10101577
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global change has significant impact on permafrost region in the Tibet Plateau. Soil moisture (SM) of permafrost is one of the most important factors influencing the energy flux, ecosystem, and hydrologic process. The objectives of this paper are to retrieve the permafrost SM using time-series SAR images, without the need of auxiliary survey data, and reveal its variation patterns. After analyzing the characteristics of time-series radar backscattering coefficients of different landcover types, a two-component SM retrieval model is proposed. For the alpine meadow area, a linear retrieving model is proposed using the TerraSAR-X time-series images based on the assumption that the lowest backscattering coefficient is measured when the soil moisture is at its wilting point and the highest backscattering coefficient represents the water-saturated soil state. For the alpine desert area, the surface roughness contribution is eliminated using the dual SAR images acquired in the winter season with different incidence angles when retrieving soil moisture from the radar signal. Before the model implementation, landcover types are classified based on their backscattering features. 22 TerraSAR-X images are used to derive the soil moisture in Beiluhe, Northern Tibet with different incidence angles. The results obtained from the proposed method have been validated using in-situ soil moisture measurements, thus obtaining RMSE and Bias of 0.062 cm(3)/cm(3) and 4.7%, respectively. The retrieved time-series SM maps of the study area point out the spatial and temporal SM variation patterns of various landcover types.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Soil Texture Estimation Over a Semiarid Area Using TerraSAR-X Radar Data
    Zribi, M.
    Kotti, F.
    Lili-Chabaane, Z.
    Baghdadi, N.
    Ben Issa, N.
    Amri, R.
    Duchemin, B.
    Chehbouni, A.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 353 - 357
  • [42] RETRIEVAL OF SOIL MOISTURE USING MULTI-TEMPORAL HYBRID POLARIMETRIC RISAT-1 DATA
    Ponnurangam, G. G.
    Jagdhuber, T.
    Hajnsek, I.
    Rao, Y. S.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1312 - 1315
  • [43] Estimating the Leaf Area Index of Agricultural Crops using multi-temporal dual-polarimetric TerraSAR-X Data: A case study in North-Eastern Germany
    Ahmadian, Nima
    Borg, Erik
    Roth, Achim
    Zoelitz, Reinhard
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2016, (5-6): : 301 - 317
  • [44] Estimation the change of soil moisture in vegetated surface with multi-temporal AirSAR data
    LiuWei
    Shi, JC
    Wang, JM
    YuQin
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3519 - 3521
  • [45] Soil roughness retrieval from TerraSar-X data using neural network and fractal method
    Maleki, Mohammad
    Amini, Jalal
    Notarnicola, Claudia
    ADVANCES IN SPACE RESEARCH, 2019, 64 (05) : 1117 - 1129
  • [46] Large scale monitoring of land surface with multi-temporal AMSR-E data and retrieval of soil moisture
    Paloscia, S.
    Santi, E.
    Macelloni, G.
    Pettinato, S.
    Pampaloni, P.
    2006 IEEE MICRORAD, 2006, : 176 - +
  • [47] MONITORING OF SUBARCTIC SHRUB VEGETATION CHARACTERISTICS USING TERRASAR-X AND RADARSAT-2 DATA
    Duguay, Yannick
    Bernier, Monique
    Levesque, Esther
    Tremblay, Benoit
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1194 - 1197
  • [48] Temporal and spatial soil moisture change pattern detection in an agricultural area using multi-temporal Radarsat ScanSAR data
    Yang, H.
    Shi, J.
    Li, Z.
    Guo, H.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (19) : 4199 - 4212
  • [49] Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas
    He L.
    Qin Q.
    Ren H.
    Du J.
    Meng J.
    Du C.
    Qin, Qiming (qmqin@pku.edu.cn), 1600, Chinese Society of Agricultural Engineering (32): : 142 - 148
  • [50] Monitoring of forest change by using multi-temporal satellite data
    Musaoglu, N
    Örmeci, C
    REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 41 - +