Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China

被引:11
|
作者
Wang, Chao [1 ,2 ]
Zhang, Zhengjia [1 ,2 ,3 ]
Paloscia, Simonetta [4 ]
Zhang, Hong [1 ]
Wu, Fan [1 ]
Wu, Qingbai [5 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Univ Geosci, Facaulty Informat Engn, Wuhan 430074, Hubei, Peoples R China
[4] CNR IFAC, Inst Appl Phys, Natl Res Council, I-50019 Florence, Italy
[5] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Gansu, Peoples R China
来源
REMOTE SENSING | 2018年 / 10卷 / 10期
基金
中国国家自然科学基金;
关键词
permafrost; soil moisture; SAR; multi-mode; Tibet; SYNTHETIC-APERTURE RADAR; SURFACE-ROUGHNESS; SAR DATA; L-BAND; EMPIRICAL-MODEL; PLATEAU; ASAR; RETRIEVAL; IMAGES; SERIES;
D O I
10.3390/rs10101577
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global change has significant impact on permafrost region in the Tibet Plateau. Soil moisture (SM) of permafrost is one of the most important factors influencing the energy flux, ecosystem, and hydrologic process. The objectives of this paper are to retrieve the permafrost SM using time-series SAR images, without the need of auxiliary survey data, and reveal its variation patterns. After analyzing the characteristics of time-series radar backscattering coefficients of different landcover types, a two-component SM retrieval model is proposed. For the alpine meadow area, a linear retrieving model is proposed using the TerraSAR-X time-series images based on the assumption that the lowest backscattering coefficient is measured when the soil moisture is at its wilting point and the highest backscattering coefficient represents the water-saturated soil state. For the alpine desert area, the surface roughness contribution is eliminated using the dual SAR images acquired in the winter season with different incidence angles when retrieving soil moisture from the radar signal. Before the model implementation, landcover types are classified based on their backscattering features. 22 TerraSAR-X images are used to derive the soil moisture in Beiluhe, Northern Tibet with different incidence angles. The results obtained from the proposed method have been validated using in-situ soil moisture measurements, thus obtaining RMSE and Bias of 0.062 cm(3)/cm(3) and 4.7%, respectively. The retrieved time-series SM maps of the study area point out the spatial and temporal SM variation patterns of various landcover types.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MONITORING PERMAFROST SOIL MOISTURE WITH MULTI-TEMPORAL TERRASAR-X DATA IN NORTHERN TIBET
    Wang, Chao
    Zhang, Hong
    Wu, Qingbai
    Zhang, Zhengjia
    Xie, Lei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3039 - 3042
  • [2] Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data
    Koppe, Wolfgang
    Gnyp, Martin L.
    Huett, Christoph
    Yao, Yinkun
    Miao, Yuxin
    Chen, Xinping
    Bareth, Georg
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 : 568 - 576
  • [3] Winter Wheat Growth Monitoring Using Multi-temporal TerraSAR-X Dual-polarimetric Data
    Sonobe, Rei
    Tani, Hiroshi
    Wang, Xiufeng
    Kobayashi, Nobuyuki
    Shimamura, Hideki
    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY, 2014, 48 (04): : 471 - 476
  • [4] Soil moisture estimation using multi linear regression with terraSAR-X data
    Garcia, G.
    Brogioni, M.
    Venturini, V.
    Rodriguez, L.
    Fontanelli, G.
    Walker, E.
    Graciani, S.
    Macelloni, G.
    REVISTA DE TELEDETECCION, 2016, (46): : 73 - 81
  • [5] Multi-temporal classification of TerraSAR-X data for wetland vegetation mapping
    Betbeder, Julie
    Rapinel, Sebastien
    Corpetti, Thomas
    Pottier, Eric
    Corgne, Samuel
    Hubert-Moy, Laurence
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV, 2013, 8887
  • [6] Fine Permafrost Deformation Features Observed Using TerraSAR-X ST Mode InSAR in Beiluhe of the Qinghai-Tibet Plateau, West China
    Wang, Chao
    Zhang, Hong
    Tang, Yixian
    Zhang, Zhengjia
    Zhang, Bo
    Zhao, Lin
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 320 - 324
  • [7] Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data
    Ahmadian, Nima
    Ullmann, Tobias
    Verrelst, Jochem
    Borg, Erik
    Zoelitz, Reinhard
    Conrad, Christopher
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (04): : 159 - 175
  • [8] Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data
    Nima Ahmadian
    Tobias Ullmann
    Jochem Verrelst
    Erik Borg
    Reinhard Zölitz
    Christopher Conrad
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 159 - 175
  • [10] NEW MODE TERRASAR-X INTERFEROMETRY FOR RAILWAY MONITORING IN THE PERMAFROST REGION OF THE TIBET PLATEAU
    Wang, Chao
    Zhang, Hong
    Zhang, Bo
    Tang, Yixian
    Zhang, Zhengjia
    Liu, Meng
    Zhao, Lin
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1634 - 1637