On the envelope and phase distributions for correlated Gaussian quadratures

被引:32
|
作者
Aalo, Valentine A. [1 ]
Efthymoglou, George P. [2 ]
Chayawan, Chirasil [3 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn, Boca Raton, FL 33431 USA
[2] Univ Piraeus, Dept Digital Syst, Piraeus 18534, Greece
[3] King Mongkuts Univ Technol, Dept Elect & Telecommun Engn, Bangkok, Thailand
关键词
central limit theorem; correlated Gaussian quadratures; envelope distribution; phase distribution;
D O I
10.1109/LCOMM.2007.071394
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter derives the envelope and phase distributions for correlated non-zero mean and non-identical Gaussian quadratures. The resulting envelope distribution generalizes many of the commonly used envelope distributions such as Rayleigh, Rice, and Hoyt distributions. Special cases of the phase distribution also agree with results already available in the literature.
引用
收藏
页码:985 / 987
页数:3
相关论文
共 50 条
  • [21] A Software Repository for Gaussian Quadratures and Christoffel Functions
    Stroch, Joel A.
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (06): : 111 - +
  • [22] A NONLINEAR OPTIMIZATION PROCEDURE FOR GENERALIZED GAUSSIAN QUADRATURES
    Bremer, James
    Gimbutas, Zydrunas
    Rokhlin, Vladimir
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 1761 - 1788
  • [23] ABSCISSAS AND WEIGHTS FOR GAUSSIAN QUADRATURES OF HIGH ORDER
    DAVIS, P
    RABINOWITZ, P
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1956, 56 (01): : 35 - 37
  • [24] Generalized Gaussian Quadratures for Integrals with Logarithmic Singularity
    Milovanovic, Gradimir V.
    FILOMAT, 2016, 30 (04) : 1111 - 1126
  • [25] Stochastic simulation with informed rotations of Gaussian quadratures
    Stepanyan, Davit
    Zimmermann, Georg
    Grethe, Harald
    ECONOMIC SYSTEMS RESEARCH, 2023, 35 (01) : 30 - 48
  • [26] Error estimates for Gaussian quadratures of analytic functions
    Milovanovic, Gradimir V.
    Spalevic, Miodrag M.
    Pranic, Miroslav S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 802 - 807
  • [27] ON THE USE OF GRADIENT INFORMATION IN GAUSSIAN PROCESS QUADRATURES
    Pruher, Jakub
    Sarkka, Simo
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [28] Gaussian quadratures for approximate of fuzzy multiple integrals
    Allahviranloo, T
    Otadi, M
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 175 - 187
  • [29] Distributions of envelope and phase in weakly nonlinear random waves
    Tayfun, Aziz
    Journal of Engineering Mechanics, 1994, 120 (05) : 1009 - 1025