Proliferating Cell Nuclear Antigen (PCNA) Is Required for Cell Cycle-regulated Silent Chromatin on Replicated and Nonreplicated Genes

被引:30
|
作者
Miller, Andrew [1 ,3 ]
Chen, Jiji [2 ,3 ]
Takasuka, Taichi E. [1 ,3 ]
Jacobi, Jennifer L. [1 ,3 ]
Kaufman, Paul D. [4 ]
Irudayaraj, Joseph M. K. [2 ,3 ]
Kirchmaier, Ann L. [1 ,3 ]
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Univ Ctr Canc Res, W Lafayette, IN 47907 USA
[4] Univ Massachusetts, Sch Med, Program Gene Funct & Gene Express, Slippery Rock, PA 16057 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ORIGIN RECOGNITION COMPLEX; H3; LYSINE-56; ACETYLATION; DNA-POLYMERASE-DELTA; HISTONE H3; SACCHAROMYCES-CEREVISIAE; EPIGENETIC INHERITANCE; FACTOR-C; S-PHASE; PROTEIN; YEAST;
D O I
10.1074/jbc.M110.166918
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I-and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.
引用
收藏
页码:35142 / 35154
页数:13
相关论文
共 50 条
  • [21] PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA) IN ATYPICAL AND MALIGNANT MENINGIOMAS
    ZIMMER, C
    GOTTSCHALK, J
    CERVOSNAVARRO, J
    MARTIN, H
    BEIL, M
    JAUTZKE, G
    PATHOLOGY RESEARCH AND PRACTICE, 1992, 188 (08) : 951 - 958
  • [22] IMMUNOHISTOCHEMICAL USE OF AUTOANTIBODY TO PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA)
    TSUTSUMI, Y
    TAN, EM
    NAKANE, PK
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1982, 30 (06) : 571 - 571
  • [23] Proliferating cell nuclear antigen (PCNA) expressed in human leptomeninges
    Funato, H
    Yoshimura, M
    Ito, Y
    Okeda, R
    Ihara, Y
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1996, 44 (11) : 1261 - 1265
  • [24] Proliferating cell nuclear antigen (PCNA):: a dancer with many partners
    Maga, G
    Hübscher, U
    JOURNAL OF CELL SCIENCE, 2003, 116 (15) : 3051 - 3060
  • [25] The human nuclear SRcyp is a cell cycle-regulated cyclophilin
    Dubourg, B
    Kamphausen, T
    Weiwad, M
    Jahreis, G
    Feunteun, J
    Fischer, G
    Modjtahedi, N
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (21) : 22322 - 22330
  • [26] Proliferating cell nuclear antigen (PCNA) as a prognostic factor in renal cell carcinoma
    Morell-Quadreny, L
    Clar-Blanch, F
    Fenollosa-Enterna, B
    Perez-Bacete, M
    Martinez-Lorente, A
    Llombart-Bosch, A
    ANTICANCER RESEARCH, 1998, 18 (1B) : 677 - 681
  • [27] Ampullary carcinoma: Prognostic significance of ploidy, cell-cycle analysis and proliferating cell nuclear antigen (PCNA)
    Crucitti, A
    Masetti, R
    Breccia, C
    Coppola, R
    Magistrelli, P
    Nuzzo, G
    Maggiano, N
    Picciocchi, A
    HEPATO-GASTROENTEROLOGY, 1999, 46 (26) : 1187 - 1191
  • [28] Comparison of computational methods for the identification of cell cycle-regulated genes
    de Lichtenberg, U
    Jensen, LJ
    Fausboll, A
    Jensen, TS
    Bork, P
    Brunak, S
    BIOINFORMATICS, 2005, 21 (07) : 1164 - 1171
  • [29] New weakly expressed cell cycle-regulated genes in yeast
    de Lichtenberg, U
    Wernersson, R
    Jensen, TS
    Nielsen, HB
    Fausboll, A
    Schmidt, P
    Hansen, FB
    Knudsen, S
    Brunak, S
    YEAST, 2005, 22 (15) : 1191 - 1201
  • [30] Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network
    Liu, Chenglin
    Cui, Peng
    Huang, Tao
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2017, 20 (07) : 603 - 611