Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering

被引:25
|
作者
Islam, Monsur [1 ]
Sadaf, Ahsana [1 ]
Gomez, Milagros Ramos [2 ]
Mager, Dario [1 ]
Korvink, Jan G. [1 ]
Lantada, Andres Diaz [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Microstruct Technol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Parque Cient & Tecnol,M40,Km 38, Madrid 28223, Spain
[3] Univ Politecn Madrid, Dept Mech Engn, Jose Gutierrez Abascal 2, Madrid 28006, Spain
关键词
3D carbon structure; Carbon microlattices; Carbon fibers; Additive manufacturing; Tissue engineering; Multi-scale structure; MC3T3-E1; CELLS; GLASSY-CARBON; COMPOSITES; MICRO;
D O I
10.1016/j.msec.2021.112140
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Multiscale 3D carbon architectures are of particular interest in tissue engineering applications, as these structures may allow for three-dimensional cell colonization essential for tissue growth. In this work, carbon fiber/ microlattice hybrid architectures are introduced as innovative multi-scale scaffolds for tissue engineering. The microlattice provides the design freedom and structural integrity, whereas the fibrous component creates a cellular microenvironment for cell colonization. The hybrid structures are fabricated by carbonization of stereolithographically 3D printed epoxy microlattice architectures which are pre-filled with cotton fibers within the empty space of the architectures. The cotton filling result in less shrinkage of the architecture during carbonization, as the tight confinement of the fibrous material prevents the free-shrinkage of the microlattices. The hybrid architecture exhibits a compressive strength of 156.9 +/- 25.6 kPa, which is significantly higher than an empty carbon microlattice architecture. Furthermore, the hybrid architecture exhibits a flexible behavior up to 30% compressive strain, which is also promising towards soft-tissue regeneration. Osteoblast-like murine MC3T3-E1 cells are cultured within the 3D hybrid structures. Results show that the cells are able to not only proliferate on the carbon microlattice elements as well as along the carbon fibers, but also make connections with each other across the inner pores created by the fibers, leading to a three-dimensional cell colonization. These carbon fiber/microlattice hybrid structures are promising for future fabrication of functionally graded scaffolds for tissue repair applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] 3D bioprinting of tissue engineering scaffold for cell culture
    Wu, Li
    Li, Xinxin
    Guan, Tianmin
    Chen, Yong
    Qi, Chunwei
    RAPID PROTOTYPING JOURNAL, 2020, 26 (05) : 835 - 840
  • [22] 3D scaffold with inverse opal structure for tissue engineering
    Choi, Sung-Wook
    Zhang, Yu
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [23] Electrospun nanofibrous 3D scaffold for bone tissue engineering
    Eap, Sandy
    Ferrand, Alice
    Palomares, Carlos Mendoza
    Hebraud, Anne
    Stoltz, Jean-Francois
    Mainard, Didier
    Schlatter, Guy
    Benkirane-Jessel, Nadia
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2012, 22 (1-3) : 137 - 141
  • [24] Preparation of Multi-Scale Hydrogel Scaffolds for Tissue Engineering Through Biologic Hydrogel 3D Printing and Forming System
    Liu, Yuanyuan
    Lian, Hongjun
    Wang, Yu
    Zhang, Yi
    Xie, Shaorong
    Pu, Huayan
    Peng, Yan
    Xin, Liming
    Sun, Yi
    Luo, Jun
    Yang, Yang
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2018, 8 (09) : 1244 - 1249
  • [25] A 3D Multi-scale geology modeling method for tunnel engineering risk assessment
    Xiong, Ziming
    Guo, Jiateng
    Xia, Yuanpu
    Lu, Hao
    Wang, Mingyang
    Shi, Shaoshuai
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 73 : 71 - 81
  • [26] Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites
    Fu, Yutong
    Yao, Xuefeng
    Composites Science and Technology, 2021, 216
  • [27] Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites
    Fu, Yutong
    Yao, Xuefeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 216
  • [28] A multi-scale approach for the response of a 3D carbon/carbon composite under shock loading
    Allix, O
    Dommanget, M
    Gratton, M
    Héreil, PL
    COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (03) : 409 - 415
  • [29] 3D pedestrian detection based on hybrid multi-scale cascade fusion network
    Chen, Yang
    Mu, Yan
    Ni, Rongrong
    Yang, Biao
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [30] Keynote: Multi-scale scaffolds for tissue engineering
    Neves, N.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 224 - 224