Sentiment Analysis of Amazon Products Using Ensemble Machine Learning Algorithm

被引:12
|
作者
Sadhasivam, Jayakumar [1 ]
Kalivaradhan, Ramesh Babu [2 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Dept Informat Technol & Engn, Vellore, Tamil Nadu, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Dept Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
Machine learning; Naive Bayes; SVM; Sentimental analysis; Ensemble method;
D O I
10.33889/IJMEMS.2019.4.2-041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, Sentimental Analysis is used in all online product firms. The number of users using the particular product has increased which makes the industry to improvise the characteristics of the product. These days, many users who are using websites, blogs, online shopping tends to review the products they used. These reviews were taken into consideration by other users during their search for products. Hence the industry has found the root of delivering the correct product searched by the user based on the reviews of the users using the concept of sentimental analysis. Sentimental Analysis is the concept of data analysis where the collections of reviews are taken into consideration, and those reviews are analyzed, processed and recommended to the user. The reviews given are longer and which consist of a few paragraphs of content. In this paper, the dataset is collected from the official product sites. Initially, these reviews must be pre-processed in order to remove the unwanted data's such as stop words, be verbs, punctuations, and conjunctions. Once, the pre-processing is over the trained dataset is classified using Naive Bayes and SVM algorithm. These existing algorithms provided the accuracy which is not worth enough. Hence, an ensemble approach has been applied to enhance the accuracy of the given reviews. An ensemble is a classification approach by combining two or more algorithms and calculate the mode value based on the vote reference for every algorithm which is used. In this paper, Naive Bayes, SVM, and Ensemble algorithm are combined. We proposed an Ensemble method that helps in providing better accuracy than the current existing algorithm. Once the accuracy is calculated, based on the reviews, the particular product is recommended for the user.
引用
收藏
页码:508 / 520
页数:13
相关论文
共 50 条
  • [31] Analyzing Amazon Products Sentiment: A Comparative Study of Machine and Deep Learning, and Transformer-Based Techniques
    Ali, Hashir
    Hashmi, Ehtesham
    Yildirim, Sule Yayilgan
    Shaikh, Sarang
    ELECTRONICS, 2024, 13 (07)
  • [32] Amazon Product Reviews: Sentiment Analysis Using Supervised Learning Algorithms
    Hawlader, Mohibullah
    Ghosh, Arjan
    Raad, Zaoyad Khan
    Chowdhury, Wali Ahad
    Shehan, Md Sazzad Hossain
    Bin Ashraf, Faisal
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [33] Sentiment Analysis Using Machine Learning: A Comparative Study
    Singh, Neha
    Jaiswal, Umesh Chandra
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2023, 12 (01):
  • [34] Sentiment Analysis of Tweets using Machine Learning Approach
    Rathi, Megha
    Malik, Aditya
    Varshney, Daksh
    Sharma, Rachita
    Mendiratta, Sarthak
    2018 ELEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2018, : 365 - 367
  • [35] Drug Sentiment Analysis using Machine Learning Classifiers
    Uddin, Mohammed Nazim
    Bin Hafiz, Md Ferdous
    Hossain, Sohrab
    Islam, Shah Mohammad Mominul
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 92 - 100
  • [36] Optimization of sentiment analysis using machine learning classifiers
    Singh, Jaspreet
    Singh, Gurvinder
    Singh, Rajinder
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2017, 7
  • [37] Investigating sentiment analysis using machine learning approach
    Sankar, H.
    Subramaniyaswamy, V
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 87 - 92
  • [38] Sentiment Analysis using Machine Learning for Business Intelligence
    Chaturvedi, Saumya
    Mishra, Vimal
    Mishra, Nitin
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2162 - 2166
  • [39] Twitter Sentiment Analysis Using Machine Learning Techniques
    Le, Bac
    Huy Nguyen
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, 2015, 358 : 279 - 289
  • [40] A Survey on Sentiment Analysis by using Machine Learning Methods
    Yang, Peng
    Chen, Yunfang
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 117 - 121