Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network

被引:7
|
作者
Li, Meina [1 ]
Kwak, Keun-Chang [2 ]
Kim, Youn Tae [3 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
[2] Chosun Univ, Dept Elect Engn, Gwangju 61452, South Korea
[3] Chosun Univ, Grad Sch, Dept IT Fus Technol, Gwangju 61452, South Korea
关键词
energy expenditure; linguistic regression; radial basis function neural network; context-based fuzzy c-means clustering; COMBINED HEART-RATE; PHYSICAL-ACTIVITY; VALIDITY; VALIDATION; ALGORITHM;
D O I
10.3390/s16101566
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] By using neural network with radial basis function for neural filter design
    Lu, Hung-Ching
    Hung, Ta-Hsiung
    Tzeng, Shian-Tang
    Advances in Neural Networks and Applications, 2001, : 183 - 188
  • [22] Estimation of impact point using Radial Basis Function Network
    Komatsuzaki T.
    Iwata Y.
    Hongo T.
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2011, 77 (784): : 4521 - 4533
  • [23] An Accelerator for Classification using Radial Basis Function Neural Network
    Mohammadi, Mahnaz
    Ronge, Rohit
    Chandiramani, Jayesh Ramesh
    Nandy, Soumitra
    2015 28TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2015, : 137 - 142
  • [24] Adaptive DOA estimation using a radial basis function network
    Mochida, E
    Iiguni, Y
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2005, 88 (09): : 11 - 20
  • [25] Aerodynamic Parameter Estimation using Two-Stage Radial Basis Function Neural Network
    Singh, Dhan Jeet
    Vermal, Nischal K.
    Ghosh, A. K.
    Sanwale, Jitu
    Malagaudanavar, Appasaheb
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 461 - 467
  • [26] Output Power Estimation of High Concentrator Photovoltaic using Radial Basis Function Neural Network
    Anaty, Mensah K.
    Alamin, Yaser I.
    Bouziane, Khalid
    Perez Garcia, Manuel
    Yaagoubi, Reda
    Alvarez Hervas, Jose Domingo
    Belkasmi, Merouan
    Aggour, Mohammed
    2018 6TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2018, : 960 - 965
  • [27] Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network
    Yang Xiao-hua
    Huang Jing-feng
    Wang Jian-wen
    Wang Xiu-zhen
    Liu Zhan-yu
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06): : 883 - 895
  • [28] Direction of arrival and state of polarization estimation using Radial Basis Function Neural Network (RBFNN)
    Zainud-Deen, S. H.
    Malhat, H. A.
    Awadalla, K. H.
    El-Hadad, E. S.
    PROCEEDINGS OF THE 25TH NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2008, 2008, : U161 - U168
  • [30] Channel Estimation Using Radial Basis Function Neural Network in OFDM-IDMA System
    Simsir, Sakir
    Taspinar, Necmi
    WIRELESS PERSONAL COMMUNICATIONS, 2015, 85 (04) : 1883 - 1893