Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells

被引:69
|
作者
Palilis, Leonidas C. [1 ]
Vasilopoulou, Maria [2 ]
Verykios, Apostolis [1 ,2 ]
Soultati, Anastasia [2 ]
Polydorou, Ermioni [1 ,2 ]
Argitis, Panagiotis [2 ]
Davazoglou, Dimitris [2 ]
Mohd Yusoff, Abd. Rashid bin [3 ]
Nazeeruddin, Mohammad Khaja [4 ]
机构
[1] Univ Patras, Dept Phys, Patras 26504, Greece
[2] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Aghia Paraskevi 15341, Greece
[3] Swansea Univ, Dept Phys, Vivian Tower,Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[4] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, Rue Ind 17, CH-1951 Sion, Switzerland
关键词
copper compounds; electron transport layers; hole transport layers; organic solar cells; perovskite solar cells; transition metal chalcogenides; HOLE-TRANSPORT LAYER; TRANSITION-METAL DICHALCOGENIDES; COPPER SULFIDE NANOCRYSTALS; QUANTUM-DOT INTERLAYER; ANODE BUFFER LAYER; HIGH-PERFORMANCE; HIGHLY EFFICIENT; LOW-TEMPERATURE; MOS2; NANOSHEETS; THIN-FILM;
D O I
10.1002/aenm.202000910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper-based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Interfacial Modification in Organic and Perovskite Solar Cells
    Bi, Shiqing
    Leng, Xuanye
    Li, Yanxun
    Zheng, Zhong
    Zhang, Xuning
    Zhang, Yuan
    Zhou, Huiqiong
    ADVANCED MATERIALS, 2019, 31 (45)
  • [22] Interfacial Dipole in Organic and Perovskite Solar Cells
    Chen, Qi
    Wang, Cheng
    Li, Yaowen
    Chen, Liwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (43) : 18281 - 18292
  • [23] A Water-Stable Organic-Inorganic Hybrid Perovskite for Solar Cells by Inorganic Passivation
    Tai, Edward Guangqing
    Wang, Ryan Taoran
    Chen, Jason Yuanzhe
    Xu, Gu
    CRYSTALS, 2019, 9 (02)
  • [24] Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells
    Jilin Wang
    Ruibin Tang
    Lixiu Zhang
    Fei Long
    Disheng Yao
    Liming Ding
    Journal of Semiconductors, 2022, 43 (01) : 13 - 15
  • [25] Steps toward efficient inorganic-organic hybrid perovskite solar cells
    Noh, Jun Hong
    Seok, Sang Il
    MRS BULLETIN, 2015, 40 (08) : 648 - 653
  • [26] Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells
    Xu, Weidong
    Liu, Lijia
    Yang, Linju
    Shen, Pengfei
    Sun, Baoquan
    McLeod, John A.
    NANO LETTERS, 2016, 16 (07) : 4720 - 4725
  • [27] High-Voltage Hybrid Organic-Inorganic Perovskite Solar Cells
    Ramirez, Yves A.
    De La Rosa, Angel
    Enriquez, Christian H.
    Rivera, Daniel A.
    Rodriguez, Victor M.
    Telles, Alberto J.
    Frias, Luis Valerio
    Hodges, Deidra R.
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 2303 - 2306
  • [28] Nanomechanical Approach for Flexibility of Organic-Inorganic Hybrid Perovskite Solar Cells
    Ahn, Seung-min
    Jung, Eui Dae
    Kim, Si-Hoon
    Kim, Hangeul
    Lee, Sukbin
    Song, Myoung Hoon
    Kim, Ju-Young
    NANO LETTERS, 2019, 19 (06) : 3707 - 3715
  • [29] Back-contacted hybrid organic-inorganic perovskite solar cells
    Jumabekov, A. N.
    Della Gaspera, E.
    Xu, Z. -Q.
    Chesman, A. S. R.
    van Embden, J.
    Bonke, S. A.
    Bao, Q.
    Vak, D.
    Bach, U.
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (15) : 3125 - 3130
  • [30] Efficient organic-inorganic hybrid perovskite solar cells processed in air
    Madhu, Seetharaman S.
    Nagarjuna, Puvvala
    Kumar, P. Naresh
    Singh, Surya Prakash
    Deepa, Melepurath
    Namboothiry, Manoj A. G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) : 24691 - 24696