BLoG: Post-Silicon Bug Localization in Processors using Bug Localization Graphs

被引:0
|
作者
Park, Sung-Boem [1 ,2 ]
Bracy, Anne [2 ,3 ]
Wang, Hong [2 ]
Mitra, Subhasish [1 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Intel Corp, Microarchitecture Res Lab, Santa Clara, CA USA
[3] Washington Univ, Dept Comp Sci & Engn, St Louis, MO USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Silicon debug; post-silicon validation; IFRA; BLoG; TEST-GENERATION; CHECKING; DEBUG;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Post-silicon bug localization - the process of identifying the location of a detected hardware bug and the cycle(s) during which the bug produces error(s) - is a major bottleneck for complex integrated circuits. Instruction Footprint Recording and Analysis (IFRA) is a promising post-silicon bug localization technique for complex processor cores. However, applying IFRA to new processor microarchitectures can be challenging due to the manual effort required to implement special microarchitecture-dependent analysis techniques for bug localization. This paper presents the Bug Localization Graph (BLoG) framework that enables application of IFRA to new processor microarchitectures with reduced manual effort. Results obtained from an industrial microarchitectural simulator modeling a state-of-the-art complex commercial microarchitecture (Intel Nehalem, the foundation for the Intel Core (TM) i7 and Core (TM) i5 processor families) demonstrate that BLoG-assisted IFRA enables effective and efficient post-silicon bug localization for complex processors with high bug localization accuracy at low cost.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 50 条
  • [21] IncBL: Incremental Bug Localization
    Yang, Zhou
    Shi, Jieke
    Wang, Shaowei
    Lo, David
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 1223 - 1226
  • [22] Deep Transfer Bug Localization
    Huo, Xuan
    Thung, Ferdian
    Li, Ming
    Lo, David
    Shi, Shu-Ting
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2021, 47 (07) : 1368 - 1380
  • [23] Effective Post-Silicon Failure Localization Using Dynamic Program Slicing
    Friedler, Ophir
    Kadry, Wisam
    Morgenshtein, Arkadiy
    Nahir, Amir
    Sokhin, Vitali
    2014 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION (DATE), 2014,
  • [24] Machine Learning-based Anomaly Detection for Post-silicon Bug Diagnosis
    DeOrio, Andrew
    Li, Qingkun
    Burgess, Matthew
    Bertacco, Valeria
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 491 - 496
  • [25] Bug Localization Based on Code Change Histories and Bug Reports
    Youm, Klaus Changsun
    Ahn, June
    Kim, Jeongho
    Lee, Eunseok
    2015 22ND ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC 2015), 2015, : 190 - 197
  • [26] Data Mining Diagnostics and Bug MRIs for HW Bug Localization
    Farkash, Monica
    Hickerson, Bryan
    Samynathan, Balavinayagam
    2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2015, : 79 - 84
  • [27] On the Value of Bug Reports for Retrieval-based Bug Localization
    Lawrie, Dawn
    Binkley, Dave
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2018, : 524 - 528
  • [28] Bug Localization Using Revision Log Analysis and Open Bug Repository Text Categorization
    Moin, Amir H.
    Khansari, Mohammad
    OPEN SOURCE SOFTWARE: NEW HORIZONS, 2010, 319 : 188 - 199
  • [29] Bug Localization by Learning to Rank and Represent Bug Inducing Changes
    Loyola, Pablo
    Gajananan, Kugamoorthy
    Satoh, Fumiko
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 657 - 665
  • [30] Improving Bug Localization using Structured Information Retrieval
    Saha, Ripon K.
    Lease, Matthew
    Khurshid, Sarfraz
    Perry, Dewayne E.
    2013 28TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 2013, : 345 - 355