Thermal decomposition cavities in physical vapor transport grown SiC

被引:5
|
作者
Sanchez, EK
Heydemann, VD
Snyder, DW
Rohrer, GS
Skowronski, M
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] II VI Inc, Saxonburg, PA 16056 USA
来源
SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2 | 2000年 / 338-3卷
关键词
physical vapor transport growth; pinholes; PVT; sublimation growth;
D O I
10.4028/www.scientific.net/MSF.338-342.55
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relationship between the formation of thermal decomposition cavities and seed mounting in physical vapor transport grown silicon carbide was investigated. Experimental results indicate that voids exist in the attachment layer between the single crystal seed and graphite crucible lid. These voids lead to the formation of cavities in the seed and grown boule by local decomposition of the seed, transport of silicon bearing species across the void and the deposition of silicon on, and diffusion into, the porous graphite lid. The application of a diffusion barrier on the seed crystal backside is shown to suppress the formation of thermal decomposition cavities.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [31] SRS SINGLE-CRYSTALS GROWN BY PHYSICAL VAPOR TRANSPORT
    HELBING, R
    FEIGELSON, RS
    JOURNAL OF CRYSTAL GROWTH, 1994, 138 (1-4) : 1075 - 1075
  • [32] Dielectric spectroscopy study of ZnSe grown by physical vapor transport
    Kokan, J
    Gerhardt, R
    Su, CH
    SEMICONDUCTORS FOR ROOM-TEMPERATURE RADIATION DETECTOR APPLICATIONS II, 1997, 487 : 517 - 522
  • [33] Photoluminescence of CdTe crystals grown by physical-vapor transport
    Palosz, W
    Grasza, K
    Boyd, PR
    Cui, Y
    Wright, G
    Roy, UN
    Burger, A
    JOURNAL OF ELECTRONIC MATERIALS, 2003, 32 (07) : 747 - 751
  • [34] Photoluminescence of CdTe crystals grown by physical-vapor transport
    W. Palosz
    K. Grasza
    P. R. Boyd
    Y. Cui
    G. Wright
    U. N. Roy
    A. Burger
    Journal of Electronic Materials, 2003, 32 : 747 - 751
  • [35] Photoinduced behavior of the VCCSi- pair defect in 4H-SiC grown by physical vapor transport and halide chemical vapor deposition
    Zvanut, M. E.
    Ngetich, G.
    Dashdorj, J.
    Garces, N. Y.
    Glaser, E. R.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [36] Thermal plasma physical vapor deposition of nanostructured SiC coatings
    Wang, XH
    Eguchi, K
    Yamamoto, A
    Yoshida, T
    SILICON CARBIDE 2002-MATERIALS, PROCESSING AND DEVICES, 2003, 742 : 137 - 142
  • [37] Crystal structure investigation of AlN crystal grown on 6H-SiC seed by a physical vapor transport method
    Shin, Hee-Won
    Lee, Dong-Hoon
    Kim, Hwang-Ju
    Park, Mi-Seon
    Jang, Yeon-Suk
    Lee, Won-Jae
    Kim, Jung-Gon
    Jeong, Seong-Min
    Lee, Myung-Hyun
    Seo, Won-Seon
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2016, 26 (01): : 49 - 52
  • [38] Initial Stage Modification for 6H-SiC Single Crystal Grown by the Physical Vapor Transport (PVT) Method
    Choi, Jung-Woo
    Son, Chang-Hyun
    Choi, Jong-Mun
    Lee, Gi-Sub
    Lee, Won-Jae
    Kim, Il-Soo
    Shin, Byoung-Chul
    Ku, Kap-Ryeol
    SILICON CARBIDE AND RELATED MATERIALS 2008, 2009, 615-617 : 7 - 10
  • [39] Surface-damage-induced threading dislocations in 6H-SiC layers grown by physical vapor transport
    Liu, JQ
    Sanchez, EK
    Skowronski, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) : G223 - G227
  • [40] Evolution of crystal mosaicity during physical vapor transport growth of SiC
    Katsuno, Masakazu
    Ohtani, Noboru
    Fujimoto, Tatsuo
    Aigo, Takashi
    Yashiro, Hirokatsu
    Materials Science Forum, 2002, 389-393 (01) : 55 - 58