Thermal decomposition cavities in physical vapor transport grown SiC

被引:5
|
作者
Sanchez, EK
Heydemann, VD
Snyder, DW
Rohrer, GS
Skowronski, M
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] II VI Inc, Saxonburg, PA 16056 USA
关键词
physical vapor transport growth; pinholes; PVT; sublimation growth;
D O I
10.4028/www.scientific.net/MSF.338-342.55
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relationship between the formation of thermal decomposition cavities and seed mounting in physical vapor transport grown silicon carbide was investigated. Experimental results indicate that voids exist in the attachment layer between the single crystal seed and graphite crucible lid. These voids lead to the formation of cavities in the seed and grown boule by local decomposition of the seed, transport of silicon bearing species across the void and the deposition of silicon on, and diffusion into, the porous graphite lid. The application of a diffusion barrier on the seed crystal backside is shown to suppress the formation of thermal decomposition cavities.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [2] Formation of thermal decomposition cavities in physical vapor transport of silicon carbide
    Sanchez, EK
    Kuhr, T
    Heydemann, VD
    Snyder, DW
    Rohrer, GS
    Skowronski, M
    JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (03) : 347 - 352
  • [3] Formation of thermal decomposition cavities in physical vapor transport of silicon carbide
    Edward K. Sanchez
    Thomas Kuhr
    Volker D. Heydemann
    David W. Snyder
    Gregory S. Rohrer
    Marek Skowronski
    Journal of Electronic Materials, 2000, 29 : 347 - 352
  • [4] Structural characterization of SiC crystals grown by physical vapor transport
    Sanchez, EK
    Heydemann, VD
    Rohrer, GS
    Skowronski, M
    Solomon, J
    Capano, MA
    Mitchel, WC
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 433 - 436
  • [5] The role of residual impurities in SiC grown by physical vapor transport
    Glass, RC
    Augustine, G
    Balakrishna, V
    Hobgood, HM
    Hopkins, RH
    Jenny, J
    Skowronski, M
    Choyke, WJ
    SILICON CARBIDE AND RELATED MATERIALS 1995, 1996, 142 : 37 - 40
  • [6] SEMIINSULATING 6H-SIC GROWN BY PHYSICAL VAPOR TRANSPORT
    HOBGOOD, HM
    GLASS, RC
    AUGUSTINE, G
    HOPKINS, RH
    JENNY, J
    SKOWRONSKI, M
    MITCHEL, WC
    ROTH, M
    APPLIED PHYSICS LETTERS, 1995, 66 (11) : 1364 - 1366
  • [7] Development of bulk SiC single crystal grown by physical vapor transport method
    Han, RJ
    Xu, XG
    Hu, XB
    Yu, NS
    Wang, JY
    Tian, YL
    Huang, WX
    OPTICAL MATERIALS, 2003, 23 (1-2) : 415 - 420
  • [8] Morphology of thick SiC epitaxial films grown by the physical vapor transport method
    Wagner, B. P.
    Singh, N. B.
    Berghmans, A.
    Knuteson, D. J.
    Kahler, D.
    Mclaughlin, S.
    Hawkins, J.
    Golombeck, J.
    JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (04) : 379 - 383
  • [9] Thermoelastic stresses in SiC single crystals grown by the physical vapor transport method
    Zibing Zhang
    Jing Lu
    Qisheng Chen
    V. Prasad
    Acta Mechanica Sinica, 2006, 22 : 40 - 45
  • [10] Morphology of Thick SiC Epitaxial Films Grown by the Physical Vapor Transport Method
    B.P. Wagner
    N.B. Singh
    A. Berghmans
    D.J. Knuteson
    D. Kahler
    S. McLaughlin
    J. Hawkins
    J. Golombeck
    Journal of Electronic Materials, 2008, 37 : 379 - 383