Modeling depth for nonparametric foreground segmentation using RGBD devices

被引:21
|
作者
Moya-Alcover, Gabriel [1 ]
Elgammal, Ahmed [2 ]
Jaume-i-Capo, Antoni [1 ]
Varona, Javier [1 ]
机构
[1] Univ Illes Balears, Dept Ciencies Matemat & Informat, Cra Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
[2] Rutgers State Univ, Dept Comp Sci, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Background subtraction; Non-parametric estimation; Absent depth observations; Moving object detection; RGBD dataset; BACKGROUND SUBTRACTION;
D O I
10.1016/j.patrec.2016.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of detecting changes in a scene and segmenting the foreground from background is still challenging, despite previous work. Moreover, new RGBD capturing devices include depth cues, which could be incorporated to improve foreground segmentation. In this work, we present a new nonparametric approach where a unified model mixes the device multiple information cues. In order to unify all the device channel cues, a new probabilistic depth data model is also proposed where we show how to handle the inaccurate data to improve foreground segmentation. A new RGBD video dataset is presented in order to introduce a new standard for comparison purposes of this kind of algorithms. Results show that the proposed approach can handle several practical situations and obtain good results in all cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [41] Automatic Foreground Segmentation Using Light Field Images
    Chen, Xianyu
    Dai, Feng
    Ma, Yike
    Zhang, Yongdong
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,
  • [42] Foreground segmentation using multiscale convolutional neural network
    Fu, Hui-Ni
    Wang, Ben-Zhang
    Liu, Heng-Zhu
    ELECTRONICS LETTERS, 2020, 56 (12) : 597 - 598
  • [43] Deep Foreground Segmentation using Convolutional Neural Network
    Shahbaz, Ajmal
    Jo, Kang-Hyun
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1397 - 1400
  • [44] Region-based statistical background modeling for foreground object segmentation
    De Beek, Kristof Op
    Gu, Irene Yu-Hua
    Li, Liyuan
    Viberg, Mats
    De Moor, Bart
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 3317 - +
  • [45] Detection of Stationary Foreground Objects Using Multiple Nonparametric Background-Foreground Models on a Finite State Machine
    Cuevas, Carlos
    Martinez, Raquel
    Berjon, Daniel
    Garcia, Narciso
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) : 1127 - 1142
  • [46] Over-Segmentation Based Background Modeling and Foreground Detection with Shadow Removal by Using Hierarchical MRFs
    Su, Te-Feng
    Chen, Yi-Ling
    Lai, Shang-Hong
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 535 - 546
  • [47] Superpixel Segmentation Using Weighted Coplanar Feature Clustering on RGBD Images
    Fang, Zhuoqun
    Yu, Xiaosheng
    Wu, Chengdong
    Chen, Dongyue
    Jia, Tong
    APPLIED SCIENCES-BASEL, 2018, 8 (06):
  • [48] Improved RGBD Semantic Segmentation Using Multi-Scale Features
    Gao, Xiaoning
    Cai, Meng
    Li, Jianxun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3531 - 3536
  • [49] Detecting Foreground Disambiguation of Depth Images Using Fuzzy Logic
    Banerjee, Tanvi
    Keller, James M.
    Skubic, Marjorie
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [50] Foreground Segmentation Using Motion Vector for Camouflaged Surveillance Scenario
    Ratthi, K. Iyshwarya
    Nithya, V.
    Yogameena, B.
    Menaka, K.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 172 - 176