Modeling depth for nonparametric foreground segmentation using RGBD devices

被引:21
|
作者
Moya-Alcover, Gabriel [1 ]
Elgammal, Ahmed [2 ]
Jaume-i-Capo, Antoni [1 ]
Varona, Javier [1 ]
机构
[1] Univ Illes Balears, Dept Ciencies Matemat & Informat, Cra Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
[2] Rutgers State Univ, Dept Comp Sci, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Background subtraction; Non-parametric estimation; Absent depth observations; Moving object detection; RGBD dataset; BACKGROUND SUBTRACTION;
D O I
10.1016/j.patrec.2016.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of detecting changes in a scene and segmenting the foreground from background is still challenging, despite previous work. Moreover, new RGBD capturing devices include depth cues, which could be incorporated to improve foreground segmentation. In this work, we present a new nonparametric approach where a unified model mixes the device multiple information cues. In order to unify all the device channel cues, a new probabilistic depth data model is also proposed where we show how to handle the inaccurate data to improve foreground segmentation. A new RGBD video dataset is presented in order to introduce a new standard for comparison purposes of this kind of algorithms. Results show that the proposed approach can handle several practical situations and obtain good results in all cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [1] Object-Based Multiple Foreground Segmentation in RGBD Video
    Fu, Huazhu
    Xu, Dong
    Lin, Stephen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (03) : 1418 - 1427
  • [2] Interactive foreground segmentation and shape reconstruction from RGBD images
    Li, Yaochen
    Sun, Rui
    Liu, Ying
    Yang, Yang
    Ma, Shuangxun
    Liu, Yuehu
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 79
  • [3] Robust Foreground Segmentation in RGBD Data from Complex Scenes Using Adversarial Networks
    Sultana, Maryam
    Bouwmans, Thierry
    Giraldo, Jhony H.
    Jung, Soon Ki
    FRONTIERS OF COMPUTER VISION, IW-FCV 2021, 2021, 1405 : 3 - 16
  • [4] Foreground segmentation using adaptive mixture models in color and depth
    Harville, M
    Gordon, G
    Woodfill, J
    IEEE WORKSHOP ON DETECTION AND RECOGNITION OF EVENTS IN VIDEO, PROCEEDINGS, 2001, : 3 - 11
  • [5] Efficient and fast multi-modal foreground-background segmentation using RGBD data
    Trabelsi, Rim
    Jabri, Issam
    Smach, Fethi
    Bouallegue, Ammar
    PATTERN RECOGNITION LETTERS, 2017, 97 : 13 - 20
  • [6] Foreground Extraction Algorithm using Depth Information for Image Segmentation
    Lee, Sang-Wook
    Yang, Hyun S.
    Seo, Yong-Ho
    2013 EIGHTH INTERNATIONAL CONFERENCE ON BROADBAND, WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS (BWCCA 2013), 2013, : 581 - 584
  • [7] Performance evaluation of foreground modeling in moving foreground segmentation
    Zhang, Xiang
    Yang, Jie
    Liu, Zhi
    OPTICAL ENGINEERING, 2009, 48 (03)
  • [8] Simple Combination of Appearance and Depth for Foreground Segmentation
    Minematsu, Tsubasa
    Shimada, Atsushi
    Uchiyama, Hideaki
    Taniguchi, Rin-ichiro
    NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017, 2017, 10590 : 266 - 277
  • [9] Foreground Segmentation by Combining Color and Depth Images
    Ottonelli, Simona
    Spagnolo, Paolo
    Mazzeo, Pier Luigi
    Leo, Marco
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 699 - 706
  • [10] Foreground Segmentation in Depth Imagery Using Depth and Spatial Dynamic Models for Video Surveillance Applications
    del-Blanco, Carlos R.
    Mantecon, Tomas
    Camplani, Massimo
    Jaureguizar, Fernando
    Salgado, Luis
    Garcia, Narciso
    SENSORS, 2014, 14 (02) : 1961 - 1987