Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

被引:76
|
作者
Zhang, Zheng [1 ]
Yang, Xiu [2 ]
Oseledets, Ivan V. [3 ]
Karniadakis, George E. [2 ]
Daniel, Luca [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Skolkovo Inst Sci & Technol, Skolkovo 143025, Russia
基金
俄罗斯科学基金会;
关键词
Analysis of variance (ANOVA); circuit simulation; generalized polynomial chaos (gPC); hierarchical uncertainty quantification; high dimensionality; microelectromechanical systems (MEMS) simulation; stochastic modeling and simulation; tensor train; uncertainty quantification; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL-CHAOS; INTEGRATED-CIRCUITS; MONTE-CARLO; APPROXIMATION;
D O I
10.1109/TCAD.2014.2369505
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient analysis of variance-based stochastic circuit/microelectromechanical systems simulator to efficiently extract the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is efficiently simulated by our simulator at the cost of only 10 min in MATLAB on a regular personal computer.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条
  • [31] Incremental qr-based tensor-train decomposition for industrial big data
    Yanping C.
    Xiaodong J.
    Hong X.
    Zhongmin W.
    Journal of China Universities of Posts and Telecommunications, 2021, 28 (01): : 10 - 23
  • [32] Pricing High-Dimensional Bermudan Options with Hierarchical Tensor Formats
    Bayer, Christian
    Eigel, Martin
    Sallandt, Leon
    Trunschke, Philipp
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (02): : 383 - 406
  • [33] BLACK BOX APPROXIMATION IN THE TENSOR TRAIN FORMAT INITIALIZED BY ANOVA DECOMPOSITION
    Chertkov, Andrei
    Ryzhakov, Gleb
    Oseledets, Ivan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A2101 - A2118
  • [34] TT-ViT: Vision Transformer Compression Using Tensor-Train Decomposition
    Hoang Pham Minh
    Nguyen Nguyen Xuan
    Son Tran Thai
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 13501 : 755 - 767
  • [35] Solving high-dimensional parabolic PDEs using the tensor train format
    Richter, Lorenz
    Sallandt, Leon
    Nuesken, Nikolas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [36] A Distributed Tensor-Train Decomposition Method for Cyber-Physical-Social Services
    Wang, Xiaokang
    Yang, Laurence Tianruo
    Wang, Yihao
    Liu, Xingang
    Zhang, Qingxia
    Deen, M. Jamal
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2019, 3 (04)
  • [37] An Incremental Tensor-Train Decomposition for Cyber-Physical-Social Big Data
    Liu, Huazhong
    Yang, Laurence T.
    Guo, Yimu
    Xie, Xia
    Ma, Jianhua
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (02) : 341 - 354
  • [38] Incremental QR-based tensor-train decomposition for industrial big data
    Chen Yanping
    Jin Xiaodong
    Xia Hong
    Wang Zhongmin
    The Journal of China Universities of Posts and Telecommunications, 2021, 28 (01) : 10 - 23
  • [39] Optimal High-Order Tensor SVD via Tensor-Train Orthogonal Iteration
    Zhou, Yuchen
    Zhang, Anru R.
    Zheng, Lili
    Wang, Yazhen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (06) : 3991 - 4019
  • [40] A Spline Dimensional Decomposition for Uncertainty Quantification in High Dimensions
    Rahman, Sharif
    Jahanbin, Ramin
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 404 - 438