A Generic Spatiotemporal Scheduling for Autonomous UAVs: A Reinforcement Learning-Based Approach

被引:16
|
作者
Bouhamed, Omar [1 ,2 ]
Ghazzai, Hakim [1 ]
Besbes, Hichem [2 ]
Massoud, Yehia [1 ]
机构
[1] Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA
[2] Univ Carthage, Higher Sch Commun Tunis, Tunis 2083, Tunisia
关键词
Reinforcement learning; scheduling solution; smart city; unmanned aerial vehicles (UAVs); vehicle routing problem; VEHICLE; VRP;
D O I
10.1109/OJVT.2020.2979559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considerable attention has been given to leverage a variety of smart city applications using unmanned aerial vehicles (UAVs). The rapid advances in artificial intelligence can empower UAVs with autonomous capabilities allowing them to learn from their surrounding environment and act accordingly without human intervention. In this paper, we propose a spatiotemporal scheduling framework for autonomous UAVs using reinforcement learning. The framework enables UAVs to autonomously determine their schedules to cover the maximum of pre-scheduled events spatially and temporally distributed in a given geographical area and over a pre-determined time horizon. The designed framework has the ability to update the planned schedules in case of unexpected emergency events. The UAVs are trained using the Q-learning (QL) algorithm to find effective scheduling plan. A customized reward function is developed to consider several constraints especially the limited battery capacity of the flying units, the time windows of events, and the delays caused by the UAV navigation between events. Numerical simulations show the behavior of the autonomous UAVs for various scenarios and corroborate the ability of QL to handle complex vehicle routing problems with several constraints. A comparison with an optimal deterministic solution is also provided to validate the performance of the learning-based solution.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [31] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [32] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Tao Zheng
    Jian Wan
    Jilin Zhang
    Congfeng Jiang
    Journal of Cloud Computing, 11
  • [33] Deep Reinforcement Learning-based Scheduling for Roadside Communication Networks
    Atallah, Rihal
    Assi, Chadi
    Khahhaz, Maurice
    2017 15TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2017,
  • [34] Reinforcement learning-based scheduling strategy for energy storage in microgrid
    Zhou, Kunshu
    Zhou, Kaile
    Yang, Shanlin
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [35] Distributed reinforcement learning-based optimization of resource scheduling for telematics
    Wen, Jing
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [36] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    IEEE Access, 2022, 10 : 125509 - 125525
  • [37] Dejavu: Reinforcement Learning-based Cloud Scheduling with Demonstration and Competition
    Kim, Seonwoo
    Nam, Yoonsung
    Park, Minwoo
    Lee, Heewon
    Kim, Seyeon
    Ha, Sangtae
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 469 - 478
  • [38] Reinforcement learning-based approach for urban road project scheduling considering alternative closure types
    Seilabi, S. E.
    Saneii, M.
    Pourgholamali, M.
    Miralinaghi, M.
    Labi, S.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2025, 40 (06) : 721 - 740
  • [39] A reinforcement learning-based approach for solving multi-agent job shop scheduling problem
    Dong, Zhuoran
    Ren, Tao
    Qi, Fang
    Weng, Jiacheng
    Bai, Danyu
    Yang, Jie
    Wu, Chin-Chia
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,
  • [40] A Deep Reinforcement Learning-Based Preemptive Approach for Cost-Aware Cloud Job Scheduling
    Cheng, Long
    Wang, Yue
    Cheng, Feng
    Liu, Cheng
    Zhao, Zhiming
    Wang, Ying
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (03): : 422 - 432