Goal-oriented error estimation and adaptivity for the finite element method

被引:274
|
作者
Oden, JT [1 ]
Prudhomme, S [1 ]
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
关键词
goal-oriented error estimation; quantities of interest; error control; mesh adaptivity; upper and lower bounds;
D O I
10.1016/S0898-1221(00)00317-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a new approach in a posteriori error estimation, in which the numerical error of finite element approximations is estimated in terms of quantities of interest rather than the classical energy norm. These so-called quantities of interest are characterized by linear functionals on the space of functions to where the solution belongs. We present here the theory with respect to a class of elliptic boundary-value problems, and in particular, show how to obtain accurate estimates as well as upper and lower bounds on the error. We also study the new concept of goal-oriented adaptivity, which embodies mesh adaptation procedures designed to control error in specific quantities, Numerical experiments confirm that such procedures greatly accelerate the attainment of local features of the solution to preset accuracies as compared to traditional adaptive schemes based on energy norm error estimates. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:735 / 756
页数:22
相关论文
共 50 条
  • [41] Explicit-in-time goal-oriented adaptivity
    Munoz-Matute, Judit
    Calo, Victor M.
    Pardo, David
    Alberdi, Elisabete
    van der Zee, Kristoffer G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 176 - 200
  • [42] Goal-oriented error estimation for transient parabolic problems
    Diez, Pedro
    Calderon, Giovanni
    COMPUTATIONAL MECHANICS, 2007, 39 (05) : 631 - 646
  • [43] Instance-Optimal Goal-Oriented Adaptivity
    Innerberger, Michael
    Praetorius, Dirk
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (01) : 109 - 126
  • [44] Linearization errors in discrete goal-oriented error estimation
    Granzow, Brian N.
    Seidl, D. Thomas
    Bond, Stephen D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416
  • [45] Goal-oriented error estimation for transient parabolic problems
    Pedro Díez
    Giovanni Calderón
    Computational Mechanics, 2007, 39 : 631 - 646
  • [46] Goal oriented error estimation for the element free Galerkin method
    Laboratori de Càlcul Numèric, Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain
    Lect. Notes Comput. Sci. Eng., 2007, (265-282):
  • [47] GOAL-ORIENTED ERROR ESTIMATION AND ADAPTIVITY FOR FREE-BOUNDARY PROBLEMS: THE DOMAIN-MAP LINEARIZATION APPROACH
    van der Zee, K. G.
    van Brummelen, E. H.
    de Borst, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 1064 - 1092
  • [48] Goal-Oriented Error Estimation for the Discontinuous Galerkin Method Applied to the Biharmonic Equation
    Goncalves, Joao L.
    Devloo, Philippe R. B.
    Gomes, Sonia M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 369 - 376
  • [49] Goal-Oriented Error Estimation for the Reduced Basis Method, with Application to Sensitivity Analysis
    Janon, Alexandre
    Nodet, Maelle
    Prieur, Clementine
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 21 - 41
  • [50] Goal-Oriented Error Estimation for the Reduced Basis Method, with Application to Sensitivity Analysis
    Alexandre Janon
    Maëlle Nodet
    Clémentine Prieur
    Journal of Scientific Computing, 2016, 68 : 21 - 41