Arithmetic cusp shapes are dense

被引:2
|
作者
McReynolds, D. B. [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
arithmetic orbifolds; cusp cross-section; flat manifolds; hyperbolic manifolds; selberg's lemma;
D O I
10.1007/s10711-007-9192-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we verify an orbifold version of a conjecture of Nimershiem from 1998. Namely, for every flat n-manifold M, we show that the set of similarity classes of flat metrics on M which occur as a cusp cross-section of a hyperbolic (n + 1)-orbifold is dense in the space of similarity classes of flat metrics on M. The set used for density is precisely the set of those classes which arise in arithmetic orbifolds.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 50 条
  • [21] On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms
    Jiang, Yujiao
    Lu, Guangshi
    ACTA ARITHMETICA, 2014, 166 (03) : 231 - 252
  • [22] Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications
    Choi, SoYoung
    Kim, Chang Heon
    OPEN MATHEMATICS, 2017, 15 : 304 - 316
  • [23] Arithmetic behaviour of Hecke eigenvalues of Siegel cusp forms of degree two
    Gun, Sanoli
    Kohnen, Winfried
    Paul, Biplab
    RAMANUJAN JOURNAL, 2021, 54 (01): : 43 - 62
  • [24] Cusp Density and Commensurability of Non-arithmetic Hyperbolic Coxeter Orbifolds
    Dotti, Edoardo
    Drewitz, Simon T.
    Kellerhals, Ruth
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (03) : 873 - 895
  • [25] ARITHMETIC OPERATIONS AMONG SHAPES USING SHAPE NUMBERS
    BRIBIESCA, E
    PATTERN RECOGNITION, 1981, 13 (02) : 123 - 137
  • [26] On the optimal shapes of bodies moving in dense media
    G. Ye. Yakunina
    Doklady Physics, 2005, 50 : 650 - 654
  • [27] Autoionization spectral line shapes in dense plasmas
    Rosmej, FB
    Faenov, AY
    Hoffmann, DHH
    Pikuz, TA
    Süss, W
    Geissel, M
    SPECTRAL LINE SHAPES, VOL 11: 15TH ICSLS, 2001, 559 : 19 - 26
  • [28] Temporally Dense Exploration of Moving and Deforming Shapes
    Frey, S.
    COMPUTER GRAPHICS FORUM, 2021, 40 (01) : 7 - 21
  • [29] On optimal shapes of bodies moving in dense media
    Yakunina, G.E.
    Doklady Akademii Nauk, 2005, 405 (04) : 484 - 488
  • [30] On the optimal shapes of bodies moving in dense media
    Yakunina, GY
    DOKLADY PHYSICS, 2005, 50 (12) : 650 - 654