Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix

被引:21
|
作者
Labahn, George [1 ]
Neiger, Vincent [2 ]
Zhou, Wei [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Lyon, ENS Lyon, Lab LIP, CNRS,Inria,UCBL, Lyon, France
基金
加拿大自然科学与工程研究理事会;
关键词
Hermite normal form; Determinant; Polynomial matrix; REDUCTION;
D O I
10.1016/j.jco.2017.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a nonsingular n x n matrix of univariate polynomials over a field K, we give fast and deterministic algorithms to compute its determinant and its Hermite normal form. Our algorithms use (O) over tilde (n(omega) inverted right perpendicular s inverted left perpendicular) operations in K, where s is bounded from above by both the average of the degrees of the rows and that of the columns of the matrix and omega is the exponent of matrix multiplication. The soft-O notation indicates that logarithmic factors in the big-O are omitted while the ceiling function indicates that the cost is (O) over tilde (n(omega)) when s = o(1). Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:44 / 71
页数:28
相关论文
共 50 条
  • [31] Algorithms for computing the Hermite reduction of a polynomial matrix
    Labhalla, S
    Lombardi, H
    Marlin, R
    THEORETICAL COMPUTER SCIENCE, 1996, 161 (1-2) : 69 - 92
  • [32] A new type of Hermite matrix polynomial series
    Defez, Emilio
    Tung, Michael M.
    QUAESTIONES MATHEMATICAE, 2018, 41 (02) : 205 - 212
  • [33] Polynomial normal densities generated by hermite polynomials
    Plucińska A.
    Plucińskii E.
    Journal of Mathematical Sciences, 1998, 92 (3) : 3921 - 3925
  • [34] On the Computation of the Determinant of a Generalized Vandermonde Matrix
    Kitamoto, Takuya
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2014, 2014, 8660 : 242 - 255
  • [35] Certified computation of the sign of a matrix determinant
    Pan, VY
    Yu, YQ
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 715 - 724
  • [36] BRICKLAYING AND THE HERMITE NORMAL-FORM
    GILBERT, WJ
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (03): : 242 - 245
  • [37] On random nonsingular Hermite Normal Form
    Hu, Gengran
    Pan, Yanbin
    Liu, Renzhang
    Chen, Yuyun
    JOURNAL OF NUMBER THEORY, 2016, 164 : 66 - 86
  • [38] ON THE COMPUTATION OF SMITH NORMAL FORM OF A MATRIX OF GENERALIZED POLYNOMIALS WITH RATIONAL EXPONENTS
    Kures, Miroslav
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 103 - 108
  • [39] On the computation of the elementary divisors and the Smith normal form of homogeneous matrix pencils
    Mitrouli, M
    Kalogeropoulos, G
    Koukouvinos, C
    UTILITAS MATHEMATICA, 1996, 49 : 161 - 172
  • [40] AN ALGORITHM FOR NUMERICAL COMPUTATION OF THE JORDAN NORMAL-FORM OF A COMPLEX MATRIX
    KAGSTROM, B
    RUHE, A
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1980, 6 (03): : 398 - 419